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general integral constraints that these eddies must satisfy. There has as yet been no 
complete analysis on the detailed internal structure and interaction characteristics 
of these eddies with the surrounding fluid. The principal purpose of this paper is to 
present a unified asymptotic theory describing the propagation and structure of 
coherent cold-core domes on a sloping bottom and their (dynamical and 
thermodynamical) interaction with the surrounding fluid. 

One important conclusion of the analysis presented by the Nof (1983) study was 
that, in the absence of any interaction of the eddy with the surrounding environment, 
the along-shelf propagation speed was given simply by g's*/ fo (hereafter called the 
Nof speed), where g', s* and fo are the reduced gravity, the constant topographic slope 
and the Coriolis parameter, respectively, and that the transverse or cross-shelf 
velocity was identically zero. Note that the Nof speed is independent of the detailed 
spatial structure of the eddy and depends only on the density difference between the 
eddy and the surrounding fluid, the bottom slope and the constant Coriolis 
parameter. The order of magnitude of the along-shelf speed predicted by the Nof 
formula is in qualitative agreement with the observations presented by Houghton 
et al. (1982). Howevcr, thc data taken from the rotating-tank experiments described 
by Mory et al. (1987) did not completely agrcc with the Nof theory. The experiments 
clearly indicated that a non-negligible cross-shelf drift was present. Another 
interesting observation was that the azimuthal velocity field above the eddy in the 
surrounding water was appreciable and was probably larger in magnitude than the 
swirl velocity in the eddy interior. This last observation strongly suggests that it is 
important to include the dynamical response of the surrounding fluid in determining 
the evolution of an initially isolated cold-core eddy. 

Mory et al. (1987) suggested various mechanisms which may account for the above 
discrepancies. The first proposal centred on the action of an induced wave drag on 
the dome due to the excitation of topographic vorticity waves generated by the 
baroclinic vortcx-tube compression associated with the passage of the cold dome 
through the surrounding fluid. Earlier work by Flierl (1984a) had shown how this 
drag could result in a mean meridional drift for surface trapped warm eddies on a p- 
plane. 

A second mechanism suggested by Mory et al. (1987) was that frictional forces 
between the eddy and the bottom (which in the experimental configuration may 
have been particularly important) could result in cross-shelf motion. Mory et al. 
(1987) were unable, however, to distinguish which of these two mechanisms was 
dynamically dominant in their experiment. 

A third effect that may have dynamical importance, especially in the oceano- 
graphic context, is the process of ventilation between the cold eddy and the 
surrounding relatively warmer slope water. Ou & Houghton (1982) argued that this 
effect was of particular importance during the evolution of the cold dome observed 
on the Middle Atlantic Bight during 1979. Although the heating rate for the Middle 
Atlantic Bight cold eddy was a function of the distance the eddy travelled, Houghton 
et al. (1982) estimated that on average it was approximately between 0.5 "C and 
2.0 "C per month. Based on a representative eddy temperature of about 4 "C a 
Newtonian heating timescale for the cold pool will be on the order of lo7 s or about 
3 4  months. It is possible to show (see $3.2) that this (eddy to slope water) mass 
conversion timescale is comparable with the timescale of the topographic Rossby 
waves induced by the vortex-tube compression in the slope water associated with the 
propagating eddy. We may expect, therefore, that the heating processes documented 
by Houghton et al. (1982) and Ou & Houghton (1982) will lead to a non-steady 
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FIGURE I .  Geometry of the two-layer model used in this paper. 

dynamical interaction between the cold eddy and the relatively warmer slope water 
involving diabatic heating, vortex- tube compression and the radiation of topographic 
Rossby waves. 

In  this paper a theory is developed to describe the propagation of a coherent cold- 
core eddy on a linearly sloping bottom. The theory will incorporate both dynamical 
interactions of the eddy with the surrounding fluid and Ventilation processes. Based 
on ‘ synoptic ’ parameter values suggested by the oceanographic and experimental 
data, the new model equations that we derive to  study the above processes 
correspond to strongly interacting ‘hybrid ’ quasi-geostrophic, intermediate- 
lengthscale geostrophic dynamics (see Charney & Flier1 1981). Specifically, we argue 
that the dynamics of the surrounding slope water is essentially quasi-geostrophic but 
that the eddy dynamics while geostrophic is not quasi-geostrophic because eddy 
thickness changes are not small in comparison with the eddy-scale height itself. The 
above model is derived in a formal asymptotic expansion based on two-layer shallow- 
water theory assuming a small (appropriately scaled) shelf slope parameter. 

The parameterization we adopt to describe the ventilation is the CI or cross- 
interfacial mass flux model of Dewar (1987, 1988a, b) .  Physically, this para- 
meterization models the ventilation process as a continuous conversion of cold eddy 
water into relatively warmer slope water and is convenient for the two-layer model 
considered here. There have been other ventilation parameterizations suggested. For 
example, Chapman & Nof (1988) have proposed a parameterization for continuously 
stratified eddy models based on potential vorticity conservation principles. 

The nonlinear model equations (see (3.14) and (3.15)) contain two non-dimensional 
parameters : an ‘interaction ’ parameter (denoted p )  which physically measures the 
ratio of eddy-induced vortex-tube compression in the surrounding slope water to  the 
background vorticity gradient associated with the shelf slope ; and a diabatic heating 
parameter (denoted /3) which measures the ratio of the timescale associated with the 
Nof translation speed to the ventilation timescale. In  the absence of ventilation 
processes these equations admit an exact radially symmetric isolated-eddy slope- 
water solution which travels at the Nof speed and satisfies the Stern integral 
constraint (Mory 1985). However, the presence of the diabatic ventilation terms 
leads to temporal evolution in the eddy height which in turn, i t  is shown, leads to a 
weak topographic wave field in the slope water and a wave-drag-induced upslope 
drift in the propagating eddy. 
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The plan of the paper is as follows. In  $2 the non-dimensional problem is 
formulated based on shallow-water theory and some preliminary remarks are made. 
In $3  the small-topographic-slope approximation is introduced and the ' quasi- 
geostrophic, intermediate lengthscale geostrophic ' model is derived. In  $4, the 
multiple-scale asymptotic theory is developed to describe the propagation and 
evolution of an initially isolated eddy due to the presence of ventilation processes and 
the subsequent emergence of the topographic wave field. In $5 ,  the various salient 
features of our theory are illustrated with a simple example which assumes that the 
eddy has a parabolic configuration. The paper is summarized and some concluding 
remarks are made in $6. 

2. Problem formulation 
The basic model we assume is an f-plane two-layer system (both layers are 

assumed hydrostatic, homogeneous and incompressible) with a linearly varying 
bottom slope (see figure 1 ) .  The dimensional equations of motion for the upper layer 
or slope water (layer 1) can be written in the form 

[a,.+u:.v*]u:+jê ,x u:+gv*r* = 0 ,  ( 2 . 1 ~ )  

(r*-h*),*+V*. [ U ? ( H +  ?I*- h*-s*y*)] = - X * ( x * ,  y*, t * ) ,  (2.lb) 

where u: = (u:, v;) is the horizontal velocity field, and f, g ,  r*, h*, H ,  and s* are the 
constant Coriolis parameter, gravitational acceleration, reduced layer- 1 pressure, 
cold dome thickness, ' mean ' layer- 1 thickness and bottom slope parameter, 
respectively. The dimensional coordinates are (x*, y*) and t* is dimensional time. 
Subscripts x*, y* and t* indicate partial differentiation, and V* = (a,,, aU*). The term 
- X * ( x * ,  y * , t * )  in (2.lb) models the slope-water mass gain associated with the 
conversion of cold eddy water into relatively warmer slope water as a result of the 
diabatic processes. We will comment more completely on this term below. 

The dimensional equations of motion describing the evolution of the cold-core eddy 
can be written in the form 

( 2 . 2 ~ )  

h: + v*- [u,* h*] = X * ( x * ,  y*, t * ) ,  (2.2b) 

where the notation convention is similar to that used in (2.1), and where p* is the 
dynamic pressure field in the eddy. 

The diabatic heating of the cold pool is determined by the function X * ( x * ,  y*, t * )  
in the eddy continuity equation (2.2b). Our parameterization for this term is based 
on the cross-interfacial (CI) model proposed by Dewar (1987, 1988a, b )  for 
dynamically active warm rings given by 

(2.2c) 

In  this formulation ( 2 . 2 ~ )  is a simple Newtonian cooling/heating law which models 
the conversion of relatively colder eddy water to warmer slope water on a timescale 
determined by l/P*. The reader is referred to Dewar (1987, 1988a, b)  for a complete 
account of the physical principles for the model ( 2 . 2 ~ ) .  However, we point out here 
that this model implicitly assumes that the fluid must exist in either the cold-eddy 
density state or the relatively warmer slope-water density state. Accordingly, if the 
cold eddy is heated by the surrounding slope water an appropriate volume of eddy 
water is converted into slope water and, as a result, the effect of the warming will be 
to induce a mass loss in the cold eddy which is modelled by (2.2b, c ) .  It is important 

1 

Pz 
[a,,+u,*.v*]u,*+fe^,~~,*+-v*p* = 0, 

A?*(x*, y*, t * )  = -P*h*. 
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to add, however, that  other eddy diabatic heating/cooling parameterizations have 
been suggested (e.g. Chapman &, Nof 1988). 

The system of equations (2.1) and (2.2) is closed with the requirement that  the 
dynamic pressure be continuous across the eddy-slope-water interface, i.e. 

where p l ,  p 2  and g’ are the layer 1 and 2 densities, and the reduced gravity gf = 
( p ,  - p l )  g / p ,  > 0 (stable stratification), respectively. 

Further analysis is facilitated by reformulating the governing equations into non- 
dimensional form. The non-dimensionalization scheme we adopt is motivated by 
(but is somewhat different from) the scalings used in Flierl (1984b). The non- 
dimensional (unasterisked) variables are given by 

p* = p19?l*+p,g‘(h*+s*y*), (2.3) 

(2.4) i (x*,y*) = L(x , y ) ,  t* = ( fL/g’s*)  t ,  h* = h,h, 

u: = SfLU, ,  ?l* = a( fL)2g-’v, uz* = g’s*f -1u2, 

p* = p,Lg’s*p, 

where L = (g’H)i/f, h, = h*(x* = y* = t* = 0) and S = h,/H. The horizontal length- 
scale is the internal deformation radius and time has been scaled advectively 
based on the theoretical Nof translation speed. The scalings for u: and 1;1* are based 
on the assumption that changes in upper-layer relative vorticity are due to vortex 
compression with u: and q* in geostrophic balance. As we will see, the above scalings 
will imply that the upper-layer dynamics will be quasi-geostrophic under a small- 
slope-parameter assumption. The lower-layer dynamics will be primarily geostrophic. 
The scaling for p* is geostrophic and the scaling for u; is the Nof translation speed. 
However, changes in the eddy thickness h(x, y , t )  will be as important as the 
horizontal divergence term V - u ,  in the continuity equation. Thus while momentum 
advection can be ignored for the eddy, the evolution of h(z ,  y, t )  is strongly coupled 
to u,. These scalings are similar to those presented in Whitehead et al. (1990). 

Substitution of (2.4) into (2.1), (2.2) and (2.3) gives the non-dimensional problem 

s u l ~ + 6 ( u , . v ) u l + t ~ x u l + v ~  = o ,  ( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

h,+V*(hu,)  = -/3h, (2.5d) 

(1 -g f /g )6y+Sh+s(y -p )  = 0, (2.5e) 

where /? = p*( f s ) - l ,  and s = s*L/H. We will estimate the magnitudes of 6, s and ,8 in 
$3.2. 

The following boundary conditions are imposed on the model. Suppose the 
projection of the intersection of the eddy with the sloping bottom on the plane z = 
0 is given by $(x, y, t )  = 0. The kinematic condition, which physically expresses the 
fact that a fluid parcel on the deforming eddy boundary remains on the boundary, 
is given by 

q5,+u2-V$ = 0 on $(z,y,t) = 0. 

The eddy thickness must satisfy 

For the upper layer we will impose the additional constraint that 1“./ + 0 as r + co 
‘ahead’ of the propagating eddy. As pointed out by Miles (1968), this is the correct 
‘no upstream waves’ condition (see also McKee 1971; McCartney 1975; Flierl 
1984a,b). 

s(h-g’T/g), +V. [u1(6h+ SY- 1 -g’q/g)] = -s@, 

su2, +s(u2. V )  u2 + t3 x u, + v p  = 0, 

(2.6) 

h(z,  y, t )  = 0 on $(z, y, t )  = 0. (2.7) 
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3. Analysis for small topographic slope 
3.1. ModiJied Nof formulae 

It is possible to  see how the theoretical expressions that Nof (1983) derived for the 
along-shelf and cross-shelf velocities are modified by the presence of a dynamically 
active upper layer as follows. Let us suppose that a steadily travelling ansatz can be 
made in the form u, = u,([,  C), h = h( f [ ,  C), 7 = y ( f [ ,  5) and # = #([, 5) with [ = x- 
c,t and 5 = y-cyt where c = (c,, cy) is the translation velocity vector. In the absence 
of any diabatic processes, the eddy momentum and continuity equations can be 
written in the form 

(3.1) 

V . [ h ( u , - c ) ]  = 0, (3.2) 

s2[(u2 - c ) .  V ]  (u, - c )  +as3 x u, + V(S7/ + Sh + 85) = 0 ,  

where V = (at, a<), respectively. The eddy boundary conditions (2.6) and (2.7) can be 
written in the respective forms, 

(3.3a) 

(3.3b) 

If the product (3.1)mh is integrated over the eddy region R = {([, 5) I aR = q5} i t  
follows that 

(3.4) 

In  deriving (3.4) we have already used the fact that the integral of h( [ ,  5) times the 
nonlinear terms in (3.1) is identically zero since if we integrate by parts these terms 
it follows that 

JJR h(u, - c ) .  V ( u ,  - c )  = Lo JJR h(u, - c )  - n(u2 - c )  - (u, - c )  v - [h(u,-c)] ,  

and the first term on the right-hand side is zero because of the boundary condition 
(3.3 b) and the second term on the right-hand side is zero because of (3.2) ; see also Nof 
(1983). 

From the continuity equation (3.2) we can infer the existence of a co-moving mass 
transport stream function $ = $([, 5) satisfying 

(3.5) 

Note that i t  follows from (3.3a) that $ is constant on # = 0, i.e. the eddy boundary 
forms a streamline in the co-moving frame of reference. Substituting (3.5) into (3.4) 
yields the relation 

h(u, -c )  = g3 x V$. 

It follows, immediately, that the components of the translation velocity vector will 
be given by 

(3.7) 
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In  the no interaction limit ( S + O ) ,  these expressions reduce exactly to  the Nof 
formulae. 

3.2. Approximation of small topographic slope 

The modified Nof formulae (3 .7)  and (3 .8)  state that the interaction between the eddy 
and the surrounding fluid is O(&/s) in comparison with the leading-order (non- 
interaction) terms. I n  this section we shall examine the small-slope asymptotic limit 
defined by 

wherc 0 < s < 1 and p = O(1).  This limit will correspond to a strongly interacting 
eddy-slope water configuration in the sense that although 0 < s x S < 1 the fact that 
p = O ( 1 )  in (2 .5e)  will mean that the leading-order dynamics for the eddy height 
cannot be decoupled from the dynamics for the geostrophic pressure in the slope 
water (see (3 .14) ) .  Physically, this limit has a simple interpretation. The scaled 
topographic slope parameter s = s*L/H can be rearranged into the form s = 

(s*g'/f ) / (g 'H) i .  Thus the parameter s can be interpreted as the ratio of the Nof speed 
to  the phase or group speed of the long baroclinic gravity wave solutions in the 
model. The limit s + O+ can be viewed as a low-bandpass filter which will effectively 
remove the long baroclinic gravity waves in the slope water and focus attention on 
the vorticity wave processes. 

The observations reported in Armi & D'Asaro (1980) and Houghton et al. (1982) 
suggest that  the small (non-dimensiona1)-slope approximation and the scaling (3 .9)  
are physically relevant. For examplc, the observations of the cold pool reported by 
Houghton et al. (1982) correspond to approximate parameter values of s* x 
1.2 m/km, L x 15 km, h, x 30-40 m and H x 20(r300 m suggesting s x 4 x lop2, 
6 x 2 x and consequently that ,u = O( 1 ) .  The oceanographic observations of Armi 
& D'Asaro and the rotating-tank data of Mory et al. scale similarly. The magnitude 
of the non-dimensional heating parameter p can be estimated as follows. Based on a 
heating rate of about 2 "C/month and a scale eddy temperature of 4 OC, it follows 
that p* x 2 x lo-' s-l. Based onf x lop4  s-l and s z 4 x lop2 it therefore follows that 
/3 = p*( fs)-' x lo-'. Consequently, as a rough first approximation, we see that s x S 
and that heating processes, while relatively weak, are an order of magnitude larger 
than the ageostrophic terms in the eddy momentum balance. 

Substitution of (3 .9)  into (2 .5)  yields the following set of equations for the eddy 
and surrounding slope-water problem : 

x u, + v y  = -suit - sp(ul * V )  ul ,  (3 .10a)  

(3.10b) 

2 3 X u z + & z + p V ( h + ~ )  = - s u ~ ~ - s ( u ~ - V ) U ~ ,  (3 .11a)  

h,+V.(hU,) = -ph,  (3.11b) 

6 = ps, (3 .9)  

V - U, = sh, + SV * (YU,) + ~ s V -  (hu,) + sph, 

subject to the eddy boundary conditions 

(3 .12a)  

(3.12b) 

and the appropriate radiation condition. In  (3.106) we have neglected those terms in 
(2 .5b)  which are O(yg'/g).  The elimination of these terms will filter the long surface 
gravity waves out of the model. 

The location of the slope parameter s in (3 .10)  occurs in such a way that to O(s) 
the dynamics of the shelf water will be quasi-geostrophic. The location of the slope 

19 FLM 223 
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parameter s in ( 3 . l l a ,  b) implies that the interior eddy dynamics is essentially 
geostrophic but not quasi-geostrophic since changes in h are comparable with h itself. 
This is analogous to the 'intermediate lengthscale dynamics ' identified in Charney & 
Flierl (1981). 

We can exploit the fact that 0 < s 4 1 by constructing a straightforward 
asymptotic expansion of the form 

Substitution of this expansion into (3.10), (3.11) and (3.12) yields the 0 ( 1 )  problem 
(7, P, U l ,  4, h, $) (70, Po, 4 0 3  uzo3 ho, $ 0 )  +s(rl,P,> 4 1 ,  *z1> hl, $1, + . . . . (3.13) 

in the form 
( 3 . 1 4 ~ )  

~ o t - ~ O z + , u ~ ( ~ O J o )  = -Pho. (3.14b) 

The quasi-geostrophic potential vorticity equation (3 .144  is obtained in the usual 
way (see e.g. Pedlosky 1987, $3.12), by forming the vorticity equation for the O(s) 
equations associated with (3. 10a), eliminating the O(s) divergence term using 
(3.10b), and then finally simplifying the resulting expression using the O( 1 )  equations 
obtained from (3.11). 

The leading-order velocities and dynamic pressure in the eddy will be obtained 
from the auxiliary relations 

( 3 . 1 5 ~ )  
(3.15b) 
( 3 . 1 5 ~ )  

U,, = $3 x vqo, 
~ 2 0  = - 2 1 + / d 3  x V(qo+ho),  

Po = Y +,u(TO + h O L  

and the eddy boundary conditions can be written in the form 

( 3 . 1 6 ~ )  
(3.16b) 

where the Jacobian is given by J(A ,  B )  = A X B Y - A y B x .  
The problem posed by the set of equations (3.14) retains all of the physics 

associated with the Nof and Mory et al. theories. If we were to introduce (as we 
eventually will in a suitable form) co-moving coordinates 6 = x - c , ~  and g = y- 
cut into (3.14) (with /3 = 0) and multiply (3.14b) by 6 and integrate over the eddy 
region R,  the result would be the generalized Nof formula (3.7). Similarly, multiplying 
(3.146) by 6 and integrating over R would yield (3.8). 

The model of Ou & Houghton (1982) for the along-shelf heating of the Middle 
Atlantic Cold Pool can be viewed as corresponding to (3.14b) with qo as a prescribed 
geostrophic pressure associated with a steady along-shelf current and the additional 
approximation hol 4 hoz. In Ou & Houghton's theory the slope water does not 
dynamically evolve and thus there is no analogue of ( 3 . 1 4 ~ )  in their model. The 
equations (3.14a, b) without the heating terms have also been derived in Whitehead 
et al. (1989). Their analysis develops an integral constraint for isolated cold eddies 
and a lower bound for the eddy radius. Although no explicit analytical solutions are 
presented, a series of numerical experiments is described. 

Earlier in this section we argued that, based on observed order of magnitude 
estimates for our scalings, the interaction parameter ,u = O( 1) .  Consequently, 
(3.14)-(3.16) constitute a fully interacting coupled eddy-slope water model. We have 
not been able to find a general solution for these equations for arbitrary initial 
conditions. However, exact nonlinear solutions can be obtained for some special 
cases. For example, in the absence of any diabatic processes (i.e. /3 = 0) we can find 
exact radially symmetric non-radiating steadily travelling solutions (described in the 
next section). 

on $o = 0 ,  1 $ o , - $ o z + , u J ( ~ o + ~ o ~ $ o )  = 0, 
h, = 0, 
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4. Weak diabatic heating theory 
4.1. Problem .formulation 

Although we have not been able to find a general solution to (3.14) and (3.16), it is 
possible to  make further progress under a weak diabatic heating limit. In our 
discussion in $3.2 it was argued that the interaction parameter p = O(1) but that 
/3 = O(l0-l). In this Section we shall develop a theory describing the dynamical 
evolution of an isolated eddy and slope-water configuration, which is initially 
balanced so that  there is no fully developed 0 ( 1 )  wave field in the slope water for 
t z 0+, under the asymptotic limit 0 -4 s -4 /3 -4 1. We shall show that the vortex-tube 
dynamics associated with the diabatic mass conversion will result in the generation 
of topographic Rossby waves in the slope water and an induced upslope motion in 
the propagating eddy. 

Assuming the cold-core eddy is to leading order radially symmetric, it is natural 
to reformulate the governing equations in the co-moving polar coordinates r = 
(f;'+c)i and 0 = tan-'(</:/5), and the slow time T = Pt, where 6 and y are the co- 
moving phase variables 

rjt 

6 = x-P'J' c,(t')dt', 
0 

[ =  y-p-l[c,(t')dt'. 

( 4 . 1 ~ )  

(4.1 b )  

Note that the along-shelf and cross-shelf velocities given by - 5, = cz( 7') and - Q = 
c,(T) respectively have both been formally scaled O( 1)  on account of the assumption 
that p = 0 ( 1 )  in (3.7) and (3.8). As it turns out, however, the assumption that the 
leading-order eddy and slope-water configuration contains no wave field will imply 
that c ,  = O(P). We have also allowed the translation speeds to be time dependent on 
the slow timescale O(,&l) because of the presence of the diabatic heating terms. 

It follows from (4.1) that derivatives in the governing equations will map 
according to  

(4.2a) 

(4.2b) 

(4.2 c )  

8, --f cos (0) a, - r-l sin (0) a,, 
a, + sin (8) a, + r-l cos (0) a,, 

a, + - cz( T )  [cos (0) a, - v1 sin (0) a,] - c,  ( T )  [sin (0) a, + r-l cos (0) a,] + P aT. 
As well, the boundary of the eddy will be written in the form 

#(z,y,t)  = r-a(0,  T) = 0. 

Substitution of (4.2) and the assumed form for the eddy boundary into (3.14), 
(3.15) and (3.16) yields 

[COS (e) a, - r-l sin (0) a,] [ - cXV2q +q + h] + p J ( q ,  V 2 q )  

- cy [sin (0) a, + r-l cos (0)  a,] V = - pV 'qT, (4.3) 

+c,[sin(8)a,+r-'cos(8)a,]h = phT+/3h, (4.4) 

(c, + 1) [cos (8) a, - r-l sin (0) a,] h -pJ (q ,  h) 

subject to the eddy boundary conditions 

h = 0, (4.5a) 

(c ,  + 1) [a sin (0)],-cy[a cos (8)], = -pa,(q + h),-,u(q + h),-paa,, (4.5b) 

evaluated on r = a(6,T) .  In  polar coordinates, the Jacobian takes the form 
19-2 
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J ( A ,  B )  = r-l(ArBo-AoBr) and V = arr + r-l a, + r-' aeo. Kote that we have deleted 
the zero subscript from the dependent variables for subsequent notational 
conveniencc. 

The radiation condition on the slope-water geostrophic pressure can be written in 
the form 

(4.6) 

G. E .  Swaters and G. R. Flierl 

lim r; q(r,  8; T) = 0, 
r-m 

in the sector I8-8,1 < Bx where 8* = tan-l (c , /c , ) .  This condition is obtained as 
follows. The slowly modulated eddy will propagate along a path whose tangent 
vector is given by (c,(T), c,(T)) on the (x, y)-coordinate plane at  each instant of time. 
The velocity vector will form an angle 8* = tan-l(c,/c,) with the positive x-axis. 
Defining 'ahead' of the propagating eddy to be those coordinates with angle 6' 
satisfying -in < 8- 8, < in, then the 'no waves' constraint that riy --f 0 as r + co 
ahead of the propagating eddy (see Miles 1968 or Flierl 10846) can be written as 
above. 

4.2. The leading-order solution 
We shall develop a weakly ventilated theory for an initially radially symmetric 
isolated baroclinic eddy. The (formal) asymptotic expansion is given by 

h ( r , O ; T )  = h(O)(r;T)+ph(l)(r,8;T)+ ..., (4.7a) 

y(r,O;T) = 7 ( O ) ( r ; T ) + ~ V ( l ) ( r , 8 ; ~ ' ) +  ..., (4.7b) 

c,(T) = c y ( T ) + O ( p ) ,  (4.7d) 

a(8;T)  = .co)(T)+p.(l)(e;T)+..., (4.74 

c,(T) = cl/O)(T)+/3cC'(T)+O(p2). (4.7e) 

As well, the eddy boundary conditions (4.5a, b )  will have to be Taylor expanded 
about r = a(')(T). Neglecting terms of O($) and higher, the approximate boundary 
conditions associated with (4.5a, b )  can be written in the respective forms 

h + ( a - a ~ o ~ ) h , + ~ ( a - a ~ 0 ~ ) 2 h , r + O ( ~ 3 )  = 0, (4.8a) 

- pa&a - a(')) (7 + h)rr -p(a - a(')) (7 + h)or + O(p3), (4.8 6) 

evaluated on r = a(')( T). 
In the expansion for the along-shelf translation speed c,(T) given in (4.7d) we have 

implicitly assumed @(T) = 0. It turns out that if this term is retained in the 
asymptotic expansion it is possible to formally determine completely the O(p) 
solutions (in particular the exterior wave field) and satisfy all known solvability 
conditions associated with the O(p)  equations with this parameter left unspecified. 
We have therefore chosen to set cF)(T) = 0. We hasten to add that it may be that 
cF)(T) is determined from solvability conditions associated with the O(p2)  or higher- 
order problems. However, our inability to solve the O ( p )  equations for the eddy in 
closed form for even the simplest h(O) and f O )  has not made this determination 
tractable. This is unfortunate because the experiments carried out by Mory et al. 
(1987) showed that the observed along-shelf translation speed of the eddy was 
much smaller than the Nof speed and we have not been able to reproduce this result 
for an eddy subjected to diabatic heating. (Recent informal discussions with 1). Nof 
and M. Stern suggest that errors in the measuring of the eddy density may have led 
to overestimating the appropriate Nof speed for the Mory et al. experiment and as a 
result the discrepancy may not be nearly as large as originally thought.) 

(cz+ 1) [asin (0)10-cJacos (8)ls = -P~,(v + h)r-P(V + h)o-Paa, 
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Substitution of the expansion (4 .7)  into (4 .3) ,  (4 .4)  and (4 .8)  yields the 0(1) set of 
equations 

cos (0) [ -cia) V 2v(o) + v ( O )  + h(O)], - c:) sin (0) V 2 ~ p )  = 0, (4 .9a)  

[(c:” + 1 )  cos (0) + c:) sin (0)l hp) = 0, (4 .9b)  

subject to the O( 1) boundary conditions 

h(o)[a(o) (T);  TI = 0, 

[cos (0)  (cc) + 1 )  + cc)  sin ( O ) ]  do) = 0. 
( 4 . 1 0 ~ )  

(4.10b) 

Assuming a non-trivial solution for h(O) and a(o), it  follows directly from (4.9 b) or 

($0) = - 1 c(0)  = 0 (4.11a, b )  

(4.10b) and the orthogonality of the trigonometric functions over 0 < 0 < 2~ that 

’ 1 /  

and consequently from (4 .9a)  that 
v Zr(0) + q ( o )  = - h(O) (4.12) 

where the constant of integration is zero because the cddy is isolated. 
Note that h(O)(r;T) is undetermined to this order except for the boundary 

condition ( 4 . 1 0 ~ ) .  The fact that  h(O)(r, T )  is undetermined at this order is a difficulty 
which occurs in many models of isolated eddies (e.g. Killworth 1983; Nof 1983; Flierl 
19843, among others). Flierl (1984b) chose to close the problem by specifying the 
potential vorticity distribution in the eddy interior which in turn would uniquely 
determine h(O)(r; T) .  Nof (1983) preferred to  specify the interior eddy swirl velocity 
(i.e. the eddy azimuthal velocity in a frame of reference moving with the along-shelf 
Nof speed) and thereby determine the appropriate corresponding eddy height. Here, 
it will be more convenient to  specify h(O)(r;O) and simply compute the other 
corresponding fields. Howevcr, because of our scaling, we can interpret the 
specification of h(O)(r; 0) as equivalent to a potential vorticity specification in the 
following sense. The potential vorticity associated with ( 2 . 5 ~ )  and (2 .5d)  may be 
written in the form P = [sg3- (V x u,) + l ] / h .  Thus in the limit as s + 0 we have P x 
l / h o  + O(s). Consequently in the small-slope limit adopted here, the specification of 
h, is equivalent to a specification of the leading-order potential vorticity. 

Given the leading-order eddy height h(O)(r; T ) ,  the isolated solution for the 
geostrophic pressure in the surrounding slope water can be written in the form (see 
Flicrl 19843) 

q C 0 ) ( r ;  T )  = --JnYg(r)ITr‘Jo(r’)h(O)(r’; T)dr’--JnJo(r) r‘&(r’)h(O)(r’; T)dr’, 

(4.13a) 

(4.13 b )  

0 

in r < a(o) ,  and 

in r > a(0) ,  with the ‘ isolation ’ constraint 

q(O)(r; T )  = 0, 

rJ,(r) h(O)(r; T )  dr = 0. r (4.13 c )  

The constraint ( 4 . 1 3 ~ )  is the necessary and sufficient condition for the annihilation 
of the external topographic wave field (Flierl 1984a) and can be physically 
interpreted as a zero-wave drag condition. It also follows from ( 4 . 1 3 ~ )  that  the 
relative circulation in the upper layer is zero and that T ~ O ) ( U ( O ) ;  T) = 0. 

The condition ( 4 . 1 3 ~ )  will imply that the allowed leading-order eddy radius can 
only take on a discrete set of values determined by the particular form for h(O)(r; T).  
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The no radiation condition ( 4 . 1 3 ~ )  raises an intcresting issue concerning the 
characterization or determination of the class of functions h(O)(r; T )  that will allow 
( 4 . 1 3 ~ )  to have non-trivial solutions (a(O) = 0 is always a solution). For example, if we 
take h(O)(r;O) = Jo(r)  it immediately follows that only do) = 0 is allowed. We have 
been unable to determine general necessary and sufficient conditions on h(O)(r ; T) 
which will guarantee that non-trivial solutions for u(O) exist and this aspect of our 
theory remains problematic. The constraint (4.13 c) may be viewed as resulting from 
the fact that the leading-order time evolution is modelled solely as the result of quasi- 
steady advection (see ( 4 . 2 ~ ) ) .  This assumption will remove the possibility of 
generating an O(1) wave field during the early adjustment period that would occur 
in a true initial-value problem. Accordingly, it is important t o  emphasize again that 
the theory developed here is only valid for an appropriately adjusted or dynamically 
balanced initial eddy-slope water configuration which can satisfy the O( 1 )  zero- 
wave-drag condition. We would also like to comment here that the eddy-slope-water 
solution configuration just  obtained can be interpreted as corresponding to  a steadily 
travelling baroclinir monopole on a continental shelf. 

The leading-order isolated eddy solution just constructed will satisfy the Stern 
integral constraint for isolated eddies (Mory 1983, 1985), which for our theory can be 
expressed in the form 

r[?I(O)(r; T )  + h(O)(r; T ) ]  dr  = 0. (4.14) 

This result follows immediately from (4.12) and the fact that  q:')(a(O); T) = 0 as a 
consequence of (4.13). 

Stern's integral constraint has an interesting consequence for the eddy swirl 
velocity (i.e. the eddy azimuthal velocity relative to the steady along-shelf Nof 
translation speed) distribution. It follows from ( 3 . 1 5 ~ )  that  the leading-order eddy 
swirl velocity, denoted by vus(r; T ) ,  is given by 

vs ( r ;  T )  = p(q(O)+h(O)),. (4.15) 

r 

However, from (4.14) and (4.15) i t  is easy to show that 

rzvs(r;  T )  dr  = 0. r (4.16) 

Clearly the constraint (4.16) will imply that within the eddy there must be regions 
of cyclonic and anticyclonic circulation if there is to be any swirl velocity at all. At 
first this result may seem counter-intuitive because it is natural to think that the 
swirl velocity in a cold-core eddy would be strictly anticyclonic. But this conclusion 
rests on the assumption that the dynamic pressure in the eddy is relatively 
unaffected by the dynamical response of the surrounding slope water. However, the 
theory presented here suggests (see ( 3 . 1 5 ~ ) )  that  the contribution to  the eddy 
dynamic pressure from the slope-water geostrophic pressure and the eddy thickness 
are comparable. Since yjP) < 0 where h p )  > 0 (i.e. flow above the eddy is cyclonic), i t  
can easily follow from ( 3 . 1 5 ~ )  that  the eddy swirl velocity can take on positive as well 
as negative values. We shall illustrate these points with an example calculation in $5 .  

4.3. The ,first-order perturbation equations 

There are scvcral dynamical characteristics of the leading order solution that have 
yet to be determined and for which we will have to examine the O(/?) equations of 
motion. We shall be able to determine, based on relatively direct solvability 
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conditions on the O(p) equations, the slow-time ventilation of the cold eddy as well 
as the leading-order cross-shelf translation velocity. Also, the O(p) exterior 
topographic wave field in the slope water can be determined. 

The O(p)  problem in the eddy region r < do) can be written in the form 

[cos (6)  a,. - r-l sin (6)  a,] [v2y(l) + y(l) + h'l)] -p# V2yio)/r +p+') V2yg)/r 

= cp) sin (6)  V2y:") -V2 7;1T (O) ,  ( 4 . 1 7 ~ )  

(4.17h) (+1) Y sin ( 6 )  hp) -pr-l[yp' h'l'- 0 7s (1) h'O'] 7 = h(O) T +  h(O) 

subject to the O(p) eddy boundary conditions 

h(l)(a(o), 6; T )  + h p  (u(o)  ; T) T) = 0, ( 4 . 1 8 ~ )  

pyr) = - CY (1) a ( 0 )  sin ( 6 )  - a(0) a$?), (4.18b) 

evaluated on r = do), where ( 4 . 1 8 ~ )  and yi0)(a(O), 5") = 0 has been used to obtain 
(4.18 b).  

In  the region exterior to the eddy (i.e. r > do)) the upper-layer geostrophic pressure 
satisfies 

v 2 p  +p = 0 3 (4.19) 

where, again, the constant of integration has been set to zero because it is assumed 
that y(l) + 0 as r + co. 

The leading-order response of the eddy to the diabatic heating is determined by 
(4.17b). Because of the orthogonality of the trigonometric functions and the 
periodicity that y(l) and h(') must have over the interval 0 < 6 < 2n, it  follows from 
(4.17b) that  

h p  + h(0) = 0. (4.20) 

Similarly it follows from (4.186) that  a$? = 0. The solution to  (4.20) is given by 
simply 

h(o)(r; T) = L(r) exp ( - T), (4.21) 

where h(r )  corresponds to the initial radially symmetric eddy height profile. 

4.3.1. Determination of the cross-shelf translation speed 
Even for a very simple O(1) eddy height configuration (e.g. h'O)(r;O) given as a 

parabola; see 95), the O(p)  eddy problem cannot be solved exactly and a numerical 
solution will be required. However, as it turns out, detailed knowledge of the 
structure of h(l)(r, 8; T) and y(l)(r, 8; T )  is not required in order to  determine eithcr the 
leading-order cross-shelf translation speed or the complete structure of the exterior 
(i.e. r > do)) topographic wave field. 

The simplest and most direct way to obtain cF)(T) is to  work directly with (4.17) 
rewritten in the co-moving Cartesian variables ( f , [ )  given by (4.1). In these 
coordinates (4.17) can be written in the form 

[V2q'1' +q(') +h'1']5+pJ(~'0',V271(1))+pJ(~(1),V271(0)) = ~ r )  V2yr'-V21;r$?', (4.22) 

p J ( y ' o ' ,  h(1)) +pJ(y'", h'0') = Y C  h(O) -h(O) - j t ( O ) .  T (4.23) 

I n  order to obtain solvability conditions on (4.22) and (4.23) we shall have to 
examine homogeneous solutions of the adjoint problem associated with (4.22) and 
(4.23). The procedure we describe here is similar to that developed by Flier1 (19843). 

The governing equations for the adjoint problem can be obtained by multiplying 
(4.22) by a function q51((, [; T) and multiplying (4.23) by a function && 6; T), adding 
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the two expressions togethcr and then integrating over the eddy region. The result 
can be put into the form 

/IR luJ(h"), $2)-,uV2J(q(0), $I)-,uJ(q(o)+h(o), -a,(V+ 1 )  $])I q(')d[d[ 

assuming where necessary that the boundary integrals are zero. 
The homogcncous adjoint problem will therefore be given by 

pJ(h( ' ) ,  d2) -,uV 2J( v ( O ) ,  $1) -,UJ(~(O' + h"), dl) - a,( V + 1)  = 0, (4.25) 

, u J ( q ' 0 ' , $ 2 ) + a , $ 1  = 0. (4.26) 

We can find three immediate homogeneous solutions: ($1 = 0, $2 = l ) ,  ($1 = 1, qb2 = 
0) and = - - q ( O ) ,  $2 = c/,u). There may be other solutions but we have not been able 
to  find them. When these homogeneous solutions are substituted into (4.24) the left- 
hand side is identically zero and the right-hand side gives us the required solvability 
conditions. From the pair = 0, $2 = 1 )  we find 

JJR[hr ' ,")+h(o)]d~dc = 0, 

which is satisfied on account of (4.20). Prom the pair ($1 = 1,$2  = 0) we find 
r r  

(4.27) 

(4.28) 

which is satisfied because qP)(a(O); T) = 0. From the pair ($1 = - q ( O ) ,  $2 = c/p)  we 
find 

which can be rearranged using (4.14) into the form 

c:)(T) = ~ ~ T ~ ) r [ ~ q ( o ) - 8 1 1 ( 0 ) ] ( r ;  T) d r / r o ) r q ( o ) ( r ;  0 T ) d r .  (4.29) 

It follows from (4.29) that c;)(T) > 0 since the numerator and denominator are 
both negative definite. This can be shown as follows. From (4.14) and the fact that 
hC0)(r; T) 2 0 for 0 < r < do) it will follow that the denominator in (4.29) is negative. 
If (4.21) is substituted into ( 4 . 1 3 ~ ~ )  then it follows that q(O)(r; 5") will have the general 
form q(O)(r; T) = q(r )  exp ( -  T), where q(r)  is a radially symmetric function that is 
determined in thc calculation of (4.13a). Substituting this form for v(O)(r;  T )  into the 
numerator of (4.29) yields a term of the form aT[q* exp ( - 2T)] where the constant 
q* > 0 and hence the numerator will also be negative. Thus the effect of Ventilation 
is to induce upslope motion in the propagating eddy. As the process of ventilation 
continues (4.29) implies that  the magnitude of cross-shelf drift speed will decrease 
since the magnitude of q ( O )  decreases as T increases. 

This qualitative result can be interpreted as a consequence of the conservation of 
potential vorticity in the upper layer. Equations (3.14a) and (3.14b) can be combined 
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to  state that  to  leading order in p the potential vorticity V 2 y + h + y  is conserved 
following the geostrophic motion. Since the leading-order 'averaged ' geostrophic 
vorticity or circulation in the slope water above the eddy is identically zero, the effect 
of the diabatic heating (which implies h, < 0) can only be offset by a corresponding 
increase in the mean cross-shelf position of the cold-core eddy. 

4.3.2. Determination of the exterior topographic wave Jield 

The O(p)  geostrophic pressure in the exterior region for the upper layer must 
satisfy 

(4.30) 

subject to the boundary condition 

= p -1  c, ( 1 )  cOs(e), (4.31 a )  

evaluated on r = do), and the no-upstream-waves condition 

r+P(r ,O;T)+o  as r+oO in + n < < < < n .  (4.31 b )  

The boundary condition (4.31 a ) ,  which follows directly from (4.18b), will ensure that 
the geostrophic pressure and normal mass flux in the slope water is continuous across 
the eddy boundary r = do). 

The method of solution we use is a modification of the procedures developed by 
Miles (1968) for a similar boundary-value problem (see also McKee 1971 ; McCartney 
1975; Flier1 1 9 8 4 ~ ) .  Following the arguments presented in Miles we construct the 
exterior geostrophic pressure field in the form 

00 

q(l) = u,,(T) [Y,,(r) cos (no)  + $,,(r, 0; !/')]/Yn(a(o)), ( 4 . 3 2 ~ )  
n-o 

where (4.326) 

(The reason for our particular choice of normalization in ( 4 . 3 2 ~ )  will be given below.) 
Recalling that the even (odd) Jn(r) functions have the same asymptotic form as the 

odd (even) Y,,(r) functions as r +  co (see Abramowitz & Stegun 1965), the no-waves 
condition (4.31 b )  will imply that the coefficients b,,, must satisfy the constraints 

m 

cos (2n8) = ( -  l)m+n+1b2n, 2m+l cos [ (2m+ 1) 81, (4.33a) 
m-0 

OD 

cos [ (2n+ 1 )  01 = C ( -  l )m+nb2n+l ,  2m cos 12m8], (4.336) 
m-0 

for n = 0 , 1 , 2 , .  . . in the sector in < 0 < $IT. Since the sets { c o s [ ( 2 m - 1 ) ~ ] } ~ , ,  and 
{cos (2m)}g-0 are both complete in the interval ;IT < 0 < tn, it follows from (4.33a, b) 
that  

(4/7c) m(m2 - n2)-l ( n  even, m odd), 

b,,,m = (4/.n)n(m2-nn2)-' (n odd, m even), (4.34) 

( 0  ( n - m  even). 

The only quantities that are left to determine are the a,,. If the double summation 
in (4.32) is interchanged, T , I ( ' ) ( ~ ,  8; T) can be expressed in the form 

(4.35a) 
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where rnrn(T) = [an, Yrn(r) + b n ,  m Jm(r)I/Yn(a("),  (4.35b) 

S,, being the Kronecker delta function between n and m. If we apply the boundary 
condition (4.31 a )  thc a,  will be determined from the infinite set of linear equations 

c aJnrn(a(')) = ,u-1cya(')Srn1, (4.36) 

with m = 0 , 1 , 2 , .  . . . With the bn, and a,  known the exterior solution is complete. 
The expression (4.36) implies that as the cold eddy is progressively ventilated the 
excited wave field will decrease in magnitude because cF)( T) + 0 as T + co . 

As it  turns out, relatively few a,  values need to be computed to be able to give a 
very accurate approximation to the infinite sums in (4.32) or (4.35). If we recall the 
fact that Y,(a(')) +- co and Jn(a(')) + 0 as n + co (Abramowitz & Stegun 1965), then 
clearly (4.34b) implies that r,,,(a(')) x S,, for sufficiently large n or m. (This 
property motivated our normalization in (4.32a).) In  practice, we found that for 
n, m 2 12 this property held. As a result, when it came to solving for the a,  from (4.36) 
very good results were obtained by approximating the infinite system with the 
leading 20 x 20 finite system of linear equations. (For all cases examined we found lanl 
< lo-' for n > 15.) 

m 

n=l  

5. An example calculation for a parabolic eddy 
In this section we shall illustrate the theory that we have developed with an 

example where the leading-order eddy has a simple parabolic shape. Throughout 
this section we shall adopt constant parameter values of s = 5 x ,u = 0.5 and 
p = 5 x 10-3. 

The 0(1) eddy configuration is given by 

h(')(r;  T) = exp ( -  T) 11 - ( r / ~ ( ' ) ) ~ ] .  (5.1) 
In figure 2 ( a )  we plot a cross-shelf section (along x = 0) of the total eddy height 
h(')(r;O)+sy versus y for -10 < y < 10. 

Substitution of (5.1) into (4.13a) can be evaluated analytically to yield 

for the region r < a('). In  figure 2 ( b )  we plot a cross-shelf section (along x = 0) of 
T( ' ) ( r ;  0) versus y for - 10 < y < 10. 

As well, substitution of (5.1) into ( 4 . 1 3 ~ )  can be evaluated analytically to imply 
that the allowed set of eddy radii will satisfy 

J2(u(O)) = 0, (5.3a) 

which, for convenience, we choosc to rewrite in the form 

- J z , n ,  - . (5.3b) 

where j2, , is the nth (non-zero) zero of J2(*). Throughout this section we take the 
'ground-state' radius a(') = j2, z 5.136. 

Substitution of (5.2) into (4.29) implies that the time-dependent cross-shelf 
translation speed is given by 

cF)(T) = 0.227 exp ( -  T). (5.3c) 
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FIQURE 2. (a) A cross-shelf section of the parabolic eddy given by (5.1) on the sloping bottom at, 
T = 0. (b) A cross-shelf section of the upper-layer O(1) geostrophic pressure (immediately over the 
eddy depicted in (a) as determined by (5.2) a t  T = 0. The two dots on the y-axis denote the outer 
eddy boundary a t  y = +do). 

We remark that the integral in the numerator of (4.29) was evaluated numerically. 
The total leading-order pressure in the eddy (see ( 3 . 1 5 ~ ) )  is given by 

p(O)(r; 2’) = y+y(+O)(r; 2’) +h(O)(r; T)), (5.4) 
where the first term corresponds to the dynamic pressure associated with gravity and 
the sloping bottom, and the remaining terms are responsible for generating the swirl 
velocity (i.e. the leading-order eddy azimuthal velocity relative to the leading-order 
along-shelf translation speed) in the eddy interior (see (4.15)). For convenience we 
shall denote the last two terms on the right-hand side of (5.4) as the ‘swirl pressure’. 
Recall that  the Stern integral constraint (4.14) will imply that the swirl pressure in the 
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FIQURE 3. (a )  A contour plot of the 'swirl' pressure p[h(O)(r;O) +$O)( r ;O) ]  in the eddy. The dashed 
contour is the zero-value contour. Radially inward (outward) of the zero contour the swirl pressure 
anomaly is negative (positive) as demanded by the Stern integral constraint (4.14). (a) A contour 
plot of the total eddy geostrophic pressure field given by (5.4). The eddy geostrophic Eulerian 
velocity field is essentially the Nof speed (i.e. the along-shelf translation). 

X 

eddy must take on positive as well as negative values (if it is to be non-zero). In  figure 
3 (a )  we present a contour plot of the swirl pressure ,u[h(O)(r; 0) + qJ0)(r; O)]. The dashed 
contour is the 0-contour which occurs only once for the ground-state solution. The 
region of positive swirl pressure is located in 2.68 < r ,< a(o). The region 0 < T < 2.68 
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FIGURE 4. (a) The eddy swirl velocity as determined by (4.15). The velocities are non- 
dimensionalized with the Nof speed g's/f % 2.5 cm/s. The flow is mostly cyclonic with a small 
anticyclonic zone near the eddy boundary. The dashed horizontal line marks v, = 0 and the dot on 
the r-axis denotes the eddy boundary r = do'. (b) The cyclonic azimuthal velocity in the upper layer 
immediately over the eddy as determined by (5.5). The magnitude of the maximum dimensional 
azimuthal velocity is about twice as large as the maximum dimensional eddy swirl velocity. 

has negative swirl pressure. The maximum swirl pressure is about 0.16 and occurs a t  
T z 3.83. The minimum swirl pressure is located at T = 0 and has a value of 
approximately -0.65. These values scale linearly with the magnitude of the 
interaction parameter p. 

In  figure 3 ( b )  we present a contour plot of the total leading-order eddy pressure 
field p(O)(r;O) as given by (5.4). Because the magnitude of the swirl pressure is 
relatively small in comparison with the 'bottom slope' pressure contribution, the 
resulting contours are roughly speaking parallel to the isobaths. For realistic values 
of the interaction parameter (i.e. p x 1) there are no closed pressure contours. 
Consequently, to a stationary observer watching the cold-core eddy propagate, the 
relative velocity field in the eddy interior will appear almost negligible. This property 
has been observed in some rotating-tank experiments (J. A. Whitehead, personal 
communication). It is important to add, however, that the magnitude of the 
deflection in the pressure contours scales linearly with p. 

In figures 4(a) and 4 ( b )  we present radial cross-sections of the leading-order swirl 
velocity and the azimuthal velocity in the upper layer, respectively, in the eddy 
region T < do) at t = 0. The eddy swirl velocity is given by (4.15) and the leading- 
order slope-water azimuthal velocity is given by 
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FIGURE 5.  A contour plot of the complete leading-order geostrophic pressure field in the upper layer 
as determined by (5.6). The circular contours correspond t o  the strong cyclonic flow immediately 
over the eddy and the crescent-shaped contours correspond to the topographic Rossby wave field 
behind the propagating eddy. The H(L) symbols represent positive (negative) pressure anomalies 
and the contour interval is f0.16. 

Recall that i t  followed from the Stern integral constraint (4.14) that the swirl 
velocity in the eddy must take on cyclonic and anticyclonic values. For our parabolic 
eddy model, there is a broad region r 5 3.85; see figure 4(a) where the swirl velocity 
is cyclonic. The maximum magnitude of vs(r; 0) in this cyclonic region is about 0.33. 
This would correspond to about + of the Nof translation speed in dimensional units, 
or about 0.8-1.0 cm/s if the Nof speed is about 2.5-3.0 cm/s. Near the outer interior 
edge of the eddy (3.8 5 r < a(O)), the swirl velocity becomes anticyclonic. The 
maximum swirl velocity in this region for T = 0 is located along the eddy boundary 
and is about 20% of the Nof translation speed. 

We can estimate the maximum slope-water azimuthal velocities from figure 4 (b ) .  
The azimuthal slope-water velocity is cyclonic over the eddy region and has a 
maximum non-dimensional value of about 0.8 near r = 2.0. From (2.4) the scale 
velocity in the slope water is SfL x 3.0 cm/s which implies that the maximum 
dimensional azimuthal velocity in the slope water is about 2.5 cm/s. Hence if we 
compare the swirl velocity in the eddy interior (recall that this is defined to be the 
azimuthal velocity in the eddy interior relative to the along-shelf motion) to the slope 
water azimuthal velocity we see that the velocities in the slope water are on the order 
of twice the eddy swirl velocities. 

In  figure 5 we present a contour plot of the complete leading-order geostrophic 
pressure in the upper layer including the topographic wave field in r > a(O) for T = 
0. That is, we have plotted q(r, 8 ;  0) as determined by 

( 5 . 6 ~ )  
(5.6b) 



Ventilated coherent cold eddies on a sloping bottom 585 

Even though we have not included the O(/?) solutions in the eddy region r < a(0), we 
believe that by choosing /3 small enough (recall that /? = 5 x lop3), figure 5 is a correct 
asymptotic representation of the leading-order slope-water pressure field in 0 < r < 
00. The circular contours in figure 5 correspond to the eddy-region (i.e, r < a(O)$O)(r; 
0) solution and the remaining crescent-shaped contours correspond to the external 
(i.e. r < am) q(O)(r; 0) solution and the remaining crescent-shaped contours correspond 
to the external (i.e. r >  a(o)) O(p) topographic wave field. The closed contours 
containing the H and L symbols correspond to regions of positive and negative 
pressure anomaly, respectively. The maximum wave amplitude occurs immediately 
behind the low-pressure region located over the eddy and has a magnitude of about 
14% of the minimum in the main low. 

6. Summary and concluding remarks 
A theory has been presented to describe the propagation of coherent cold-core 

baroclinic eddies on a sloping bottom and their dynamic and thermodynamic (i.e. 
ventilated) interaction with the surrounding ocean. The theoretical study presented 
in this paper was motivated by oceanographic observations (e.g. Ou & Houghton 
1982 ; Houghton et al. 1982 ; Armi & D’Asaro 1980) and rotating-tank experiments 
(e.g. Mory 1983 ; Mory et al. 1987) on steadily travelling baroclinic eddies on a sloping 
bottom. Some of the properties of the oceanographic data, particularly the along- 
shelf translation speed, agreed with a theory proposed by Nof (1983) for these eddies. 
However, the data from the rotating-tank experiments did not seem to agree with 
the Nof theory. 

Mory et al. (1987) suggested that frictional forces or dynamical interaction between 
the cold-core eddies and the surrounding slope water (neglected in the Nof theory) 
may be important. The possible importance of dynamical interactions is suggested 
by the Stern integral constraint (Mory 1983, 1985; see (4.14)) which requires that the 
area-integrated geostrophic pressure in the slope-water balance the area-integrated 
buoyancy force in the cold dome if the eddy-slope-water configuration is to be 
isolated. If this balance does not hold, then there will be an excited topographic wave 
field behind the propagating eddy (see Flierl 1984a, b )  and a concomitant cross-shelf 
drift. 

In the oceanographic context, other processes are also important. For example, 
the process of ventilation between the cold eddy and the relatively warmer slope 
water was of importance during the evolution of the cold dome described by 
Houghton et al. (1982) and Ou & Houghton (1982). 

The new model equations (see (3.14) and (3.15)) developed in this paper to study 
the dynamical and ventilatory interactions between a cold-core eddy and the 
surrounding ocean on a sloping bottom corresponded to strongly interacting ‘hybrid ’ 
quasi-geostrophic, intermediate-lengthscale geostrophic dynamics (see Charney & 
Flierl 1981). Based on parameter values suggested by the oceanographic data, the 
dynamics of the surrounding slope water is a quasi-geostrophic with relative 
vorticity induced by the vortex- tube compression associated with the passage of the 
ventilating cold-core eddy. Thc eddy dynamics is geostrophic but is not quasi- 
geostrophic because eddy height changes are not small in relation to the scale height 
of the eddy (see figure 1).  The model equations were derived in a formal asymptotic 
expansion based on the shallow-water equations for a two-layer fluid assuming a 
small (appropriately scaled) shelf slope parameter. 

Because of the discrete stratification used in our model, the parameterization we 
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adopted to describe the process of ventilation is the simple CI or cross-interfacial 
mass flux model of Dewar (1987, 1988a, 6 ) .  This parameterization models the 
ventilation process as a continuous convcrsion of cold eddy water into relatively 
warmer slope water. 

The model equations were solved using a multiple-scale asymptotic analysis valid 
in the limit of a relatively weak ventilation rate (but O(1) dynamical interaction 
between the eddy and surrounding fluid) assuming an initially radially symmetric 
isolated eddy and slope-water configuration. The leading-order solution corresponds 
to a solitary baroclinic monopole configuration (see figure 2a,  6 )  which propagates a t  
the Nof speed and which satisfies the Stern integral constraint. For the simple 
parabolic eddy shape examined in $5, the swirl velocity in the eddy is about 30 YO of 
the Nof translation speed and about 50% of the Eulcrian azimuthal velocity 
computcd in the upper layer above the eddy. Consequently, to  an external observer, 
the co-moving velocity field in the eddy would appear relatively quiescent in 
comparison to the slope-water vclocity field above the eddy. 

We are able to obtain an exact description of the induced topographic wave field 
behind the eddy (see figure 5) and to compute the associated cross-shelf translation 
velocity (see (4.29)). We find that thc cross-shelf translation is positive (i.e. up the 
slope). If c$, p* and L denote the dimensional upslope speed, the dimensional 
ventilation rate (units of i/s), and the lengthscale, then cy* - 0.227/3*L initially. The 
fact that c,* > 0 can be explained as a straightforward consequence of slope-water 
potential vorticity conservation and the ventilating eddy (see the discussion after 
(4.29)). 

It has been suggested (Mory et al. 1987) that the cddies of thc type studied in this 
paper may result from the baroclinic instability of pycnobathic or bottom gravity 
currents (see also Smith 1976; Shaw & Csanady 1983; Griffiths, Killworth & Stern 
1982). The analysis by Griffiths et al. (1982) is restricted to long wavelengths and only 
contains a single layer. It is not difficult to show that (in the absence of diabatic 
processes) our two-layer model equations (3.14) and (3.15) admit exact along-shelf 
gravity current solutions. The stratification characteristics of these gravity currents 
will resemble a cold-core coupled density front on a sloping bottom. Swaters (1991) 
presents a detailed baroclinic instability analysis of these gravity current solutions. 

Another interesting problem is the effect of bottom friction on the propagation 
characteristics of the isolated-cold-eddy solutions examined in this paper. Mory et al. 
( 1987) suggested that frictional spin-down may be important in the dynamics, 
particularly in the rotating-tank simulations. It turns out that if one includes a 
simple Rayleigh damping term in the non-dimensional eddy momentum equations 
( 2 . 5 ~ )  with an 0(1) dissipation coefficient, and subsequently examines a weak 
dissipation limit similar to the weak Ventilation limit examined here (for the 
appropriately modifed (3.14), (3.15) and (3.16)), i t  can be shown that hcO)(r; T) must 
satisfy a fully nonlinear parabolic equation and that the along-shelf translation speed 
is smaller than the Nof speed. We are currently examining this problem and hope to 
be able to report on this in the future. 

This study was initiated when G. E. S. was a postdoctoral associate supported by 
National Science Foundation grants awarded to G. R. F. Final preparation of the 
manuscript was supported in part by an Operating Research grant awarded by the 
Natural Sciences and Engineering Research Council of Canada, and by a Science 
Subvention awarded by the Department of Fisheries and Oceans of Canada to 
G. E. S. 
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On localized solutions in nonlinear Faraday 
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The dynamics of a nonlinear modulated cross-wave of resonant frequency w1 and 
carrier frequency w z w1 is considered. The wave is excited in a long channel of width 
b that contains water of depth d, which is subjected to a vertical oscillation of 
frequency 2w. As has been shown by Miles (1984b), the complex amplitude satisfies 
a cubic Schrodinger equation with weak damping and parametric driving. The 
stability of its solitary wave solution is considered here in various parameter regions. 
We find that in a certain regime the solitary wave is stable. Completely new is the 
result of instability outside this parameter regime. The instability has also been 
verified numerically. It is shown that the final stage of solitary wave instability is a 
cnoidal-wave-type solution. 

1. Introduction 
This investigation was stimulated by a recent paper by Miles (19843) who 

succeeded in developing a theory for the standing solitary wave observed by Wu, 
Keolian & Rudnick (1984). The wave appears owing to Faraday resonance, in which 
standing waves are parametrically excited in a basin that is subjected to a vertical 
oscillation at  a frequency approximately twice the natural frequency of the 
dominant cross-wave. For the details of the theory we refer to the original articles of 
Miles (1984a, b) and Larraza & Putterman (1984). We shall use the notation of Miles 
in this paper. 

The basic result of Miles is the cubic nonlinear Schrodinger equation 

i (r ,+ar)+Br, ,+(p+AJrl ' )r+yr* = 0 (1 .1)  

for the complex amplitude of the dominant cross-wave. Here, a is the linear damping 
(a > 0 )  and the terms pr and vr* appear because of the vertical oscillation z = 
a, cos 2wt in the gravitational field - g i .  Introducing a smallness parameter 6 (which 
also characterizes the amplitude of the otherwise nonlinear oscillation), one defines 

and 

The frequency w approximates the natural frequency w1 = (gk tanh kd)f, where k is 
the carrier wavenumber. p can have either sign : for kd + 00, /3 < 0 whereas for finite 
kd-values f3 > 0 is possible. In addition, since 

B E  T+kd(l-T2), (1.4) 
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Y 
y = a  

FIQURE 1. Bifurcation diagrams for X-independent stationary solutions for (a) /? > 0, ( b )  B = 0, and 
(c) p < 0. Stable (-), unstable (----), and modulationally unstable (- x - x - x -) branches 
can be recognized. 

with T = tanh kd,  we always have B > 0. On the other hand, 

A Q(6T4-5T2+16-9T-2) (1.5) 

is a monotonically increasing function of kd with negative values for T + 0, and A + 
1 for T + f  1. Thus A can have either sign, but for solitary wave solutions A > 0 is 
required since B > 0. Without loss of generality in the following we set A = B = 1. 
By rescaling the amplitude, the X-coordinate, as well as u, p, and y ,  we can always 
obtain this simplification for A ,  B > 0. 

When looking for X-independent solutions we can summarize some well-known 
results. First r = 0 is always a solution. For a/y < 1 (necessary condition) additional 
solutions Irl exp (irp) can appear with 

= -PT(YLCL.2 ) f  (1.6) 

and cos2g,=f ( 1-- ;I): 
Thus, if p < 0 four solutions appear in the region (p2 + a2)i > y > a, and only two of 
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them remain for y > (p2 +a2);. In the other case (p  2 O), two X-independent solutions 
are always present for y > a. The situation is schematically shown in figure 1. 

In that figure we have also included the stability results. The latter can be 
obtained in a straightforward manner within a linear stability analysis. We 
distinguish between stable, unstable, and modulationally unstable X-independent 
solutions. In our notation, stability and instability are first decided within a 
completely X-independent model. When the so-far stable solution becomes unstable 
with respect to X-dependent perturbations we call it modulationally unstable. To 
distinguish the various bifurcation branches it is advisable to introduce a new 
parameter 

g = - ycos Q. (1.8) 

Using the latter, we find, for example, the instability criterion for the solution (1.6) 
and (1.7) in the form 

/32-[K2+p-2y]2 > 0, (1.9) 

where K is the wavenumber of the (modulational) perturbations. From (1.6), i.e. 
lrI2 = -p+g, and (1.9) the corresponding conclusions summarized in figure 1 follow 
in a straightforward manner. Even simpler are the (in)stability arguments for the 
Irl = 0 solution. The rather trivial analysis leads to the instability criterion 

y2- (p-K”, ’  > 012, (1.10) 

which completes the instability discussions for the X-independent solutions of (1.1). 
A final remark is appropriate with respect to the case p = 0. Note that for K =I= 0 the 
two branches marked by [ > 0 correspond to a critical base in the sense of Lyapunov, 
where higher nonlinearities will determine the stability properties. 

We continue this introductory part by posing the question of whether other X- 
independent solutions, i.e. limit cycles according to the Poincard-Bendixson theorem 
(Guggenheimer & Holmes 1983), exist. Writing 

r = a+ib (1.11) 

(1.12) we obtain from (1.1) a = -aa-a2b-b3- pb + yb, 

6 = -ab+ab2+a3+pa+ya, (1.13) 

where the dot designates the time derivative. From these two equations obviously 

aa a6 
aa ab 
-+-= -201 < 0 (1.14) 

follows which, because of the logarithmic contraction for the area within a closed 
trajectory (Lichtenberg & Liebermann 1983 ; Miles 1984b), excludes the possibility of 
limit cycles. 

One of the main conclusions of Miles (19843) was that in the present system 
solitary waves can be parametrically excited. The existence of localized solutions was 
discussed and the bifurcation diagram was found. By some approximate stability 
method (Makhankov 1978; Whitham 1974) which we call the variation-of-action 
method (Laedke & Spatschek 1979) a completely stable solitary wave branch was 
predicted. As we shall elucidate in the next section, this soliton branch should be 
similar to the [ > 0 branches shown in figure 1. 

In this paper we want to emphasize the following points: (i) An exact instability 
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r 

P 

sin 29, 

FIGURE 2. Construction of four possible phases at maximum from (1.8) and (2.3). Note that for 
,8 2 0 only the solutions pz and p4, corresponding to 5 > 0, are possible because of inequality (2.5). 

calculation is possible in the region of interest. (ii) Existing solitary wave solutions 
are not stable in the whole parameter regime. (iii) An instability occurs which is 
expected to  develop into a stable cnoidal-wave-type solution. 

I n  order to  demonstrate these conclusions, the paper is organized in the following 
way. I n  the next section we present the localized solitary wave solutions of (1.1). 
Their stability behaviour is analysed in $3  by variational principles. One special case 
cannot be treated by this method: its analysis is the main part of $4. All these 
analytical investigations are supplemented by a numerical solution of (1.1) in the 
relevant parameter regime. The numerics not only confirms the mathematical 
predictions ; it also shows the nonlinear development of the instability which, a t  the 
present time, is beyond any analytical tractability. 

2. Parametrically excited solitary waves 
The non-trivial stationary solitary wave solutions of (1.1) (for A = B = i) ,  first 

presented by Miles (1984b), can be calculated in the following way. We substitute 

r = ~s(X )  = Ge'v 
into (1.1) to obtain for G 

G + G3 + (p- 5) G = 0, 

where 5 is as defined in (1.8). The imaginary part of (1.1) leads to the condition 

a 
- = sin%. 
Y 

From (2.3) we immediately have the existence condition 

y > a. (2.4) 
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FIGURE 3. Bifurcation diagrams for solitary wave solutions. 
These should be compared to figure 1. 

Demanding localized solutions of (2.2), the requirement 

P < 6  (2.5) 

G = [2([-P)]:sech [([-P):X].  (2.6) 

is necessary. Then (2.2) has the well-known solitary wave solution 

Inequalities (2.4) and (2.5) lead to existence regions similar to those of the branches 
in figure 1 labelled by 6 > 0 or [ < 0. Solutions of (1.8) and (2.3) are shown 
graphically in figure 2. 

For P 2 0 we have two principle solutions, whereas for /3 < 0 even four solutions 
are possible as long as inequality (2.5) is satisfied. The corresponding bifurcation 
diagrams are shown in figure 3 which should be compared to figure 1. The additional 
information contained in figure 3, i.e. the stability or the instability of the various 
branches, respectively, is not yet available. Its derivation is the contents of the 
following sections. 

3. Instability by variational methods 
We next perturb the solitary wave solution (2.1) in the form 

r = (G+a+ib)eip, 
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to obtain the following dynamical equations for a and b :  
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a,a = H+b-25b, (3.2) 

a,b = -H-a-22ab. (3.3) 

Here, the Schrodinger operators 

H ,  E-i3%-G2+5-/3, (3.4) 

H -  -a%-3G2+5-/3 (3.5) 

have been introduced. Their spectral properties arc wcll-known : H, possesses the 
kernel function G, i.e. 

H + G  = 0 ;  (3.6) 

the continuum starts a t  7' = 5-/3 > 0 :  

X X 
H, 1 G d X ' = y 2  [ GdX'. 

J J 
(3.7) 

On the other hand, H- has a negative eigenvalue, 

and the kernel function a, G = G, = aG/aX, i.c. 

i3G 
H _ -  = 0. ax (3.9) 

For the following calculations it will be more appropriate to use 

H H+-25 (3.10) 

instead of H,. Then (3.2) is replaced by 

ci = Hb. (3.11) 

We now summarize the basic properties of the Schrodinger operators H and H-. 
For 5 < 0, H is positive definite because of the property (3.6). In addition, H- can be 
negative for even functions because (3.9) holds for an eigenfunction with one node. 
On the other hand, for 5 > 0 the situation is different. H is negative for odd functions 
provided $ - 2 <  < 0. This statement follows from the continuum limit (3.7). From 
the definition of 7' = 5-/3 we can write the latter condition in the form /3 > -5. Thus 
for p 2 0 the fact that  H can be negative for odd functions is straightforward. In the 
case ,8 < 0, we need the extra condition y2 > a2+P2 for a negative H. The operator 
H- (for 5 > 0) is positive definite for odd functions, being orthogonal to the kernel 
function G, (see (3.9)). 

These properties suggest combining (3.3) and (3.11) in the following forms: 

(a )  for 5 < 0 a,2a f a  = -HH-a-22aa, (3.12) 

( b )  for 5 > 0 a;b 3 6 = - H P H b - 2 a b .  (3.13) 

On introducing 6 = seat, (3.14) 
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and b = beat, (3.15) 

(3.12) and (3.13) become i=-HH-cZ+a2cZ, (3.16) 

d = - H- ~ b " +  a%, (3.17) 

respectively. In the following we use (3.16) for < < 0 and even perturbations a" and 
(3.17) for < > 0 and odd functions b" in the subspace perpendicular to G,, i.e. 

- 

b " ~ , d ~ =  ( ~ " I G , )  =o .  (3.18) J 
With these restrictions both equations can be considered to be of the same type: 

6 = -PN@+a2@, (3.19) 

where P is a positive operator and N has a negative eigenvalue. (For < < 0 : P = H, 
N = H-, and the functions @ are even. For g > 0: P = H-, N = H, and the functions 

are odd and perpendicular to G,, i.e. ($1 G , )  = 0.) In  Appendix A we discuss for 
the present case how a dynamical equation of the form (3.19) leads ~ with some 
restrictions for the test functions $ - to the variational formulation (Blaha, Laedke 
& Spatschek 1987) for the exponential growth rate F, 

(3.20) 

When applied to  our original problem (3.12) and (3.13), we clearly find (for more 
details see Appendix B) that because of the transformations (3.14) and (3.15) formula 
(3.20) will predict instability for (i) < < 0, as well as (ii) < > 0 and /3 > -<. 

If we look at figure 3, we have thus proven (i) instability for the 5 < 0 branches in 
all cases of p, and (ii) instability for the < > 0 branches except for /3 < 0 in the region 
a2 < y2 < a2+p2. We have therefore to conclude that the parametrically excited 
solitary waves are not stable in the whole parameter regime. For example, for /3 < 
0 and y2 > a2+p2 an instability occurs which, to  the best of our knowledge, has not 
been discussed so far in the literature. 

For the interpretation of that instability one cannot rely on the arguments for 
parametric instabilities of plane waves (see figure 1) .  If the physical picture for the 
latter were also to apply for solitary waves in general, the appearance of a stable 
solitary wave as shown in figures 3 and 4 would not be understandable. 

4. Stability in the region p < 0, g > 0, and a2 < y2 < 01' +p2 
Let us now consider the still-unsolved case of the existence of stable parametrically 

excited solitary waves in Faraday resonance. We demonstrate stability in the region 
p < O , <  > 0, and a2 < y2 < u2+p2 in two ways: first by perturbation theory and 
secondly by numerics (see $ 5 ) .  In  this section we present the simple but powerful 
perturbation scheme which has been successfully applied to other soliton problems 
by Zakharov, Kuznetsov & Rubenchik (1986). 

Before going into the details of the calculation let us mention one important 
physical point. When comparing with the experimental results by Wu et al. (1984), 
we can recognize that upper and lower bounds for the driver amplitude are observed 
experimentally. They correspond to the limitation a2 < y2 < a2 +/?I2. Furthermore, 
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when capillary effects are included (Miles 1984a), the region /3 < 0 effectively means 
w < wl( 1 +cT)~, where CT is the surface tension. Thus the right boundary of the driving 
frequency observed in the experiment also agrees with the predicted existence region 
/3 < 0 for stable solitary waves. 

Let us consider the region lcl 4 1/31 which can be realized by y z a and 1/31 9 a. I n  
this region, we rewrite ( 3 . 2 )  and ( 3 . 3 )  in the form 

a,a = H + b - c b ,  

a , b  = -H-a-<a-2ab, 

where fi + -  = - p - ~ z - p  x ( 4 . 3 )  

A- = -a;-3G2-/3.  (4.4) 

a :b=  r2b = - ( H - + c ) ( A + - c ) b - 2 d b  (4.5) 

The idea is to use a, - r, [el, and a as small quantities. When combining (4.1) and 
(4.2) in the form 

we obtain at lowest order the equation 
1 -  

0 = -H-H+ b,. 

Its  odd solution is b, = H i l G x ,  

where G is given by (2 .6 )  for 5 = 0. Within the scaling r2 - - aT - 2, where t is 
a smallness parameter, we develop the perturbation series for b = 6, + e2bz + . . . . The 
contribution b, follows from 

r2 Hi1GX = - H- A+ b, + [H- b, - cGx - 2arH;lGx ; (4.8) 

this equation has the solvability condition 

Note that 

(4.9) 

(4.10) 

is a positive constant which can be evaluated without any difficulties. Thus the 
solution of (4.9), 

r=-af (a2-ggt ; ) i ,  (4.11) 

clearly tells us that  ( i )  in accordance with the results of the previous section for 5 < 0 
an instability occurs, while (ii) for 5 > 0 the stationary state is stable with respect 
to odd perturbations. 

Let us now investigate the even solution 

b, = G (4.12) 

of (4.6). Using the same scaling as in the previous case, we find instead of (4.8) 

P G  = - H- H+ b, + cH- G - 2aTG. (4.13) 

Its  non-trivial solvability condition turns out to be 

(4.14) 
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Note that 

for the following reason. We have 

and (GI G)  = - ( G l H ~ l l  G) = -- - < 0. 
i a  

2 i3-P) 

(4.15) 

(4.16) 

(4.17) 

Thus, we again arrive a t  (4.11) and for g > 0 the stability with respect to even 
perturbations follows. 

We are aware of the fact that  this is not a proof of stability for the whole region 
/3 < 0 ,c  > 0, and a2 < y2 < a2+p2 in the strict mathematical sense. Going back to 
figure 3 ( c ) ,  we have just shown stability for the far left parts of the c > 0 branches. 
Since we complete this investigation by a numerical procedure which clearly shows 
that (for ,f3 < 0) a transition from stable to unstable behaviour occurs in the 5 > 0 
branches a t  y = (a2+p2); we do not aim here to  construct a Lyapunov functional. 
Just  to give the main idea of the latter procedure, we make the following remarks. 
One can prove that H is positive definite for odd functions whereas H- is positive 
semidefinite for odd functions in the region being under consideration in this section. 
Thus, for odd functions a, multiply (3.12) by H-' from the left in order to get a 
monotonically decreasing functional in time. The problem is that these considerations 
arc restricted to odd functions whereas for even perturbations no successful 
procedurc is known. We also shall not discuss the transition point from g < 0 to g > 0 
which is a critical case in the sense of Lyapunov. It turns out that the critical case 
is nonlinearly unstable. It is straightforward to prove - starting from the basic 
equation ( 1 . 1 )  - that  

a,[(Re r ) 2  + (Im r)'] = y(Im r ) 2 .  (4.18) 

Thus solutions with I m r  =+= 0 initially will grow. 

5. Numerical manifestation of the analytical predictions 
Equation (1 .1)  has been solved numerically by a nonlinear semi-implicit unitary 

Crank-Nicholson scheme (Spatschek et al. 1989). This allowed us (i) to  test the 
stability predictions of $4;  (i i)  to  verify the unstable behaviour in the complementary 
parameter regime, as pointed out in $3, and (iii) to  look for the nonlinear 
development of an unstable solitary wave. 

First, we investigated the parameter regime where stability is predicted. For ,f3 < 0 
and g > 0 several runs were performed in the region a2 < y2 < a2+p2. All of them 
confirmed the analytical predictions. A typical result is shown in figure 4. Secondly, 
we took solitary wave solutions as initial conditions in the unstable parameter 
regime. As expected, they all became unstable within a finite time ( t  x 20). Finally, 
and most interesting, we followed the (nonlinear) time-development of an unstable 
solitary wave. Typical runs are shown in figures 5 and 6. At the first stage ( t  5 50) 
the breakup of the unstable soliton is clearly visible (figure 5 ) .  At a later time, a nice 
spatially coherent structure in space develops. It starts from the centre (X = 0) and 
spreads to larger X-values. It can be interpreted as a stable cnoidal wave (see 
figure 6). 
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FIGURE 4. Space-time plot of a solitary wave (absolute value of the amplitude) for /3 = - l , a  = I ,  
y = 1 . 1 .  The solitary wave is stable, at least for the time of computation (0 ,< t < 100). 

FIGURE 5. Space-time plot of the absolute value of the amplitude of an unstable solitary wave 
for /3 = - 1, a = 1, y = 1.6. Initial phase of the instability for -60 < X < 60 and 0 < t < 75. 

FIGURE 6. The same as figure 5 for large times and small X. A new state appears which can be 
interpreted as a cnoidal wave. Here the practically unchanged distribution for - 15 < X < 15 is 
shown for the  times 50 < t < 65. 
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Appendix A. A variational principle for (3.19) 
Since P is a positive operator, we rewrite (3.19) in the form 

where the operator 

is also positive. Multiplying 

F = -(N-a2P-l) 

p-16 = Ftjj 

from the left by $ and integrating over space we find 

The constant of (time-) integration can be set to  zero if we choose appropriaie initial 
conditions, i.e. at t = 0 we demand $ = f@. Since F is positive, the constant r follows 
without problems from 

where @o is the initial distribution. 
Also multiplying (A 1 )  from the left by @ and integrating over space leads to  

( @ P I  6) = <@lFl@). (A 6) 

Since all the operators are self-adjoint, we can combine (A 4) and (A 6) to give 

where 

The following rearrangement using the Schwarz inequality, 

proves the result 

It has the solution (A 11) 

Since P and P-' are positive operators, unstable perturbations exist with exponential 
growth rate f. Going back to  ( A 5 )  we can maximize with respect to the initial 
distributions to obtain the largest exponential growth rate : 

When we use the definition (A 2), (3.20) follows. It should be mentioned that the 
right-hand side of inequality (A 12) actually represents the maximum exponential 
growth rate. 
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Appendix B. Growth rates in the unstable cases 
I n  $3  we have argued that all the unstable cases lead to equations of the type (3.19) 

with the result (3.20). A few additional remarks are necessary since we have 
subsidiary conditions to obey. Let us start with 6 > 0 when we use (3.17), i.e. 

i = - ~ - ~ b " + ~ * 6 .  (B 1)  

Let us restrict b" to odd functions with (61 G,) = 0, so that H- is positive definite. As 
discussed already, H is negative in the region of interest y2 > u2+/3*. For the second- 
order differential equation (B 1 )  we start with 

(61 G,),=, = (61 G,),=, = 0. (B 2) 

Then the differential equation (B 1 )  and (3.9) tell us that (b"lG,) remains zero in 
time. Thus we can use ($5 I G,) = 0 as a consistent subsidiary condition for all times. 
Next, we have to say a few words about the inversion procedure applied in (A 1). Of 
course, we can always add an arbitrary function from the kernel of P = H-, i.e. (A 1)  
reads in the present case 

~3 = - H ~ + ~ * H I ~ ~ " + ~ G , .  (B 3) 

Here ,u is a free parameter. We fix it, however, by the requirement that we remain 
in the subspace orthogonal to G,. Thus 

The rest follows along the lines outlined in Appendix A. The maximum growth rate 
for 5 > 0 in the region y2 > a2 +/3* is 

On the other hand, for < < 0 a similar calculation leads to 

when (3.16) is used. Both formulae prove the instability results summarized in $3. 
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Nonlinear transfer due to wave-wave interactions was first described by the 
Boltzmann integrals of Hasselmann (1961) and has been the subject of modelling 
ever since. We present an economical method to evaluate the complete integral, 
which uses selected scaling properties and symmetries of the nonlinear energy 
transfer integrals to construct the integration grid. An important aspect of this 
integration is the inherent smoothness and stability of the computed nonlinear 
energy transfer. Energy fluxes associated with the nonlinear energy transfers and 
their behaviour within the equilibrium range are investigated with respect to high- 
frequency power law, peak frequency, peakedness, spectral sharpness and angular 
spreading. We also compute the time evolution of the spectral energy and the 
nonlinear energy transfers in the absence of energy input by wind or dissipated by 
wave breaking. The response of nonlinear iterations to perturbations is given and a 
formulation of relaxation time in the equilibrium range is suggested in terms of total 
equilibrium range energy and the nonlinear energy fluxes within the equilibrium 
range. 

1. Introduction 
The pioneering work of Hasselmann in the early 1960s (Hasselmann 1961, 1963a, 

1963 b )  established a theoretical framework for estimating the net transfer of energy 
among different frequency-direction components in a wave spectrum. Unfortunately, 
the resulting integro-differential equation proved to be cumbersome in terms of its 
functional structure, necessitating that it be evaluated numerically. Early numerical 
integrations of this equation required very laborious efforts and were limited by 
computer systems available in the 1960s. With the Joint North Sea Wave Project 
(JONSWAP) of Hasselmann et al. (1973), in which the pattern of spectral evolution 
along a fetch was observed to agree at least qualitatively with that predicted by 
these ' wave-wave ' interactions, substantial interest was focused on the accurate 
numerical solution of this equation. 

Longuet-Higgins (1976) and Fox (1976) used a simplified approach to estimate the 
nonlinear wave-wave energy transfer in the vicinity of the spectral peak. Their 
results were not completely consistent with the earlier approximate computations of 
Sell & Hasselmann (1972). Moreover, the determination of essential features such as 
the central minimum and the transition from positive to negative transfer on the 
right of the spectral peak was unclear from either work. Subsequent studies by Webb 

FLM 223 zn 
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(1978) and Masada (1980) derived transformed versions of the original integro- 
differential equation which proved to be more adaptable to stable numerical 
solutions. The solutions of Webb (1978) and Masada (1980) supported the early 
computational results of Sell & Hasselmann (1972) and suggested that the narrow- 
band approximations invoked by Longuet-Higgins (1976) and Fox (1976) were 
somewhat limited in their applicability. More recently, Hasselmann & Hasselmann 
(1981) have completed a careful study of the nonlinear transfer. They exploited the 
symmetry of detailed balance (invariance with respect to permutations of all four 
wavenumbers of a quadruplet k, + k, = k, + k4). Their computations constitute a 
standard for evaluation of the nonlinear energy transfer, in terms of the detail and 
accuracy with which they were performed. 

As mentioned previously, the need for a better understanding of the magnitude 
and structure of nonlinear wave-wave interaction energy transfers gained impetus 
following JONSWAP. Shortly thereafter, Hasselmann et al. (1976) considered the 
shape-stabilizing effect of wave-wave interactions on wave spectra and concluded 
that wave-wave interaction effects were so strong that wave spectra were effectively 
controlled, during periods of active wave generation, by a dynamic balance between 
wind inputs and the wave-wave interactions. Questions concerning the role of 
wave-wave interactions in governing spectral shapes have arisen since Hasselmann 
et aZ.’s (1976) study. 

Postulating the stationary distribution corresponding to Kolmogorov’s inertial 
subrange, Kitaigorodskii (1983) showed that energy fluxes due to wave-wave 
iterations should produce an f equilibrium range in the spectrum, rather than the 
f 5  form assumed in the JONSWAP spectrum. This was also the result found by 
Zakharov & Filonenko (1966), as the exact stationary solution to the wavewave 
iteration Boltzmann integral for an isotropic field of weakly nonlinear waves. 
However, Phillips (1985) suggested that a detailed balance of all source terms, 
including wind input, wave breaking and wave-wave interactions, could produce an 
f4 equilibrium range and that knowledge of all source terms was necessary to 
understand the net scaling involved in establishing an equilibrium range. The 
numerical study of Komen, Hasselmann & Hasselmann (1984) examined the 
balances among all source terms in a ‘fully developed ’ sea for frequencies extending 
from the vicinity of the spectral peak f, and up to  2.5 times f,,, basing their nonlinear 
transfer calculation on Hasselmann & Hasselmann (1981). 

Recently, Toba, Okada & Jones (1988) suggested that an energy flux must exist 
from high frequencies to low frequencies in the equilibrium range, as a result of their 
investigation of characteristics of the relaxation of a deep water wave spectrum 
under a decreasing wind. This is in addition to the more widely recognized flux from 
low frequencies to high frequencies in the Kolmogorov subrange. Therefore, a simple 
analogue to the one-dimensional cascade of energy in turbulence may not be 
appropriate for surface gravity waves. 

Along with theoretical and conceptual developments related to the role of 
wave-wave interactions in wave generation and the influence of these interactions on 
spectral shape, a parallel continuing effort has been devoted to obtaining accurate 
parameterizations of the complete Boltzmann integral. Barnett (1968), Barnett & 
Sutherland (1968) and Ewing (1971) based parameterizations of complete integrals 
on the Neumann spectrum and Pierson-Moskowitz spectrum, respectively. Etesio 
(1981) investigated parameterizations based on the scaling laws for if spectra and 
also inherent in the complete integral. Hasselmann et al. (1985) and Hasselmann & 
Hasselmann ( 1985) examined approximations using empirical orthogonal functions 
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and also parameterizations based on the superposition of a small number of discrete 
interaction configurations. The latter type of approximation has been adopted into 
the WAM model (Hasselmann et al. 1989). Since this model is the subject of 
considerable international investigation, the adequacy of the parameterization is of 
interest to most wave modellers. 

It appears from the issues raised here that estimation of the effects of nonlinear 
wavewave interactions has assumed an important role in wave generation and 
modelling research. In  spite of this, most probably owing to the complexity of the 
numerical problem, few efforts have been made toward establishing a clearer 
formulation for some of the fundamental characteristics of the nonlinear energy 
transfers. The present paper will attempt to remedy this situation, at least in part. 
We begin by formulating an efficient numerical scheme which should assist in 
understanding some of the inherent scaling properties of the nonlinear energy 
transfer. This allows computation of the nonlinear transfer on a very fine integration 
grid and also achieves high numerical stability. This scheme will then be used to 
investigate the behaviour of nonlinear energy fluxes with respect to high-frequency 
power law, peak frequency, peakedness, spectral sharpness and angular spreading. 
We also consider spectral evolution with respect to time and the response of 
nonlinear wavewave interactions to perturbations within the spectrum. 

2. Evaluation of the nonlinear flux integral 
To date most researchers have concentrated on solution of the ‘source function’ 

form for nonlinear wavewave interactions. In  this form, the collision integral for 
four resonantly interacting waves allows evaluation of the net rate of change of 
energy (or action) for a given wavenumber within the spectrum. Following 
Hasselmann (1961) the integral can be written as 

S(kl+k,-k,-k4)6(wl +w,-w3-W4)dkzdk3dk4, (2.1) 

where k, is the i th interacting vector wavenumber, wi is the radial frequency of the 
ith wavenumber and n(k,) is the action density a t  wavenumber k,. The coupling 
coefficient V2,  is a complicated function of wavenumbers k, and frequencies wi. The 
density function 9, varies cubically in the spectral densities and may be expressed 
as 

Wkl ,  k,, k,, k4) = n(k1) n(k2) “3) + n(k,) n(k3) nk4) 

-n(kl) n(k3) n ( k 4 )  -n(kl) n(kZ) n(k4)‘ (2’2) 

An efficient form for integration is obtained by removing the delta functions from 
(2.1) through the transformation which results in 

where 

an(k1) = 2 T(kl, k3) dk,, - I  at 

T(k,, k,) = W 9  - B(k,, k,, k4) ds f r:l 
20-2 
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is the nonlinear transfer integral, W = w1 + w, - w, - w, and the frequency resonance 
condition is 

w = 0. (2.5) 

Unit vector s is along the interaction locus, defined in k,-space by the constraint 
W = 0. Unit vector n is normal to that locus. The wavenumber resonance condition 
is k, + k, - k, - k, = 0, and 0 may be represented as 

1 when Ik, - k,l d Ik, - k,l 
0 when Ik,-k,l > Ikl-k,l. 

w,, k,, k4) = 

Webb (1978) showed that this provided a stable, efficient form for integration. 
However, it was still tedious to apply this formulation, since for each different value 
of k, and k,, the locus equation had to be solved and a t  each point along the locus 
in k,-space, the coupling coefficient, density term, Jacobian term and phase space 
volume had to be evaluated. 

This problem was simplified by Tracy & Resio (1982) using a polar grid in 
wavenumber space with the radial coordinate spaced according to 

km+,= hkm (2.7) 

where m + 1 is the radial index shown in figure 1. It may be demonstrated that for 
any geometrically similar k, and k,, for example (ki-kjl = hlk,-k,J, the locus 
equation scales linearly in h also. Specifically, for each point along the original locus, 
a geometrically similar point exists in a scaling locus such that ki = hk,. From the 
resonance condition for wavenumbers we obtain k; = hk,, and for each combination 
of four wavenumbers satisfying (ki, k;, k;, kl)  = h (k,, k,, k,, k,) it follows that 

g2(ki,  k;, kj, k;) = h6g2(kl, k,, k,, k,), (2.8) 

pw'/anl-i = hi law/anl-l, (2.9) 

and ds' = Ads. (2.10) 

Therefore, on the geometrically progressive polar grid of figure 1, where mi is radial 
index and n, is the angular index for the ith wavenumber, ds, laW/anl-l and q2 need 
only be calculated once for each different m3-m1 and In,-nll. Letting k, = (k , ,O)  
and k, vary over the entire grid, we initially construct a table of all possible values 
for dslaW/anl-l g2. All other locus solutions, coupling coefficients, Jacobian terms, 
and phase space volumes can be obtained by appropriate rotation and multiplication 
of these results. For example if Iki - kjl = A' Ik, - k,l, then 

W2(ki, ki, kj, k;) = (h)yj ds W2(k1, k2, k,, k,). (2.11) 

These are exact scaling relationships inherent in the collision integral. 
With the computation of 9 and integration around the locus s, evaluation of the 

nonlinear transfer contour integral $ W 2 9  lW"-/anl ds is then complete. Integration 
over all k, values gives the nonlinear transfer source function an(k,)/at, as indicated 
in (2.3). This is also usually denoted Yn,. The scaling geometry of figure 1 allowed 
Tracy & Resio (1982) to obtain integration times that were typically over an order 
of magnitude less than integration times on regularly spaced grids. Using additional 
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Origin 

FIGURE 1. Polar grid in wavenumber space with radial intersection points spaced in the geometric 
progression k,,, = hk,. This example uses k, = 0.14 me-' and h = 1.2. 

symmetries, such as permutations in k, and k,, detailed evaluations of the collision 
integral for the entire spectrum can be performed in 20 min run times on an IBM-PC 
with an accelerator board, on grid resolutions comparable to Hasselmann & 
Hasselmann (1981). 

In the work of Kitaigorodskii (1983), Resio (1987) and Toba et al. (1988), it 
appeared informative to examine fluxes of action (or energy) past a specific 
frequency wA in addition to looking a t  a source function for the entire spectrum. The 
integral for these fluxes from high to low frequencies may be written as 

where H(z) is the Heaviside function, defined as 

1 for x 2 0 
0 for x < 0 

H(x)  = (2.13) 



608 D .  Resio and W. Perrie 

and k(w)  is the wavcnumber given by k = w2/g .  The corresponding nonlinear source 
function Yn, can be obtained from a calculation of flux divergence whereas it is not 
possible to estimate the fluxes from the nonlinear source function. Flux estimates 
also provide a direct means of estimating all action transfers from one region of the 
spectrum to another. Consequently, they are useful in partitioning the percentage of 
action (or energy) that moves in various directions within the spectrum. The fact 
that we can compute positive fluxes from low to high frequencies as well as negative 
fluxes from high to low frequencies is very helpful in this regard. 

3. Comparison of integration results to previous estimates 

to spectra representable by the JONSWAP parameterization, 
Most published results for the nonlinear wave-wave transfer have been restricted 

where 

These are typically converted to directional spectra by using the normalized C O S ~ ~  0 
form for angular spreading, 

whcrc the normalization coeficient A(n) ,  satisfies 

Figures 2 (a)-2 ( d )  compare the nonlinear transfer due to wave-wave interactions 
obtained from our integration method with results of Hasselmann & Hasselmann 
(1981). Parameters for all comparative spectra described by (3.1)-(3.4) are given in 
Table 1 .  The integration resolution in our computation was selected to be comparable 
to Hasselmann & Hasselmann (1981) in the spectral peak region. Consequently, any 
apparent differences in jaggedness in figures 2 (a)-2 (d )  cannot be attributed to 
differences in grid resolution in this region of the spectrum. 

Since we have not made any simplifying assumptions, our integration accuracy is 
limited only by the resolution of the integration grid. In  figure 3 we compute the 
nonlinear transfer for the Pierson-Moskowitz spectrum considered in figure 2 ( c )  
using integration grids ( i ,  2', A ) ,  where i is the number of wavenumber bins, 2g is the 
number of angular bins from - 120" to + 120" (unless otherwise specified) and A is the 
number of points on the locus specified in (2 .5) .  Comparing integration grids (115,60, 
70), (78, 30, 50), (48, 20, 30) and (29, 10, l o ) ,  we find that (48, 20, 30) and (78, 30, 
50) give results that are very close to those of (115, 60, 70). Not shown is the 
integration with 115 wavenumber bins, 360 angular bins from - 180" to 180" (1" 
discretization) and 70 points on the locus, which is essentially the same as (115, 60, 
70). The effect of lower resolution on our integration method is a slightly less precise 
representation of the nonlinear transfer. All results are smooth. 

The action flux formulation (2.12) implies that the rate of change of energy due to 
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FIGURE 2. (a )  Nonlinear transfer due to wave-wave interactions obtained from the integration 
method of this paper: 0, compared to Hasselmann & Hasselmann (1981); A, for case 2 in the 
latter study with cos'0 angular spreading. (b )  As in (a )  for Hasselmann t Hasselmann (1981) case 
3 with angular spreading ~ 0 ~ ~ 8 .  ( c )  As in (a )  for Hasselmann & Hasselmann (1981) case 13 
corresponding to Pierson-Moskowitz spectrum. (d )  As in (a) for Hasselmann & Hasselmann (1981) 
case 15 with y = 7. 

nonlinear transfer Yn,( f) may be written as the one-dimensional divergence of energy 
flux, 

(3.5) 

where PE( f) is the energy flux past f from low to high frequencies, and rE( f) is the 
energy flux past f from high to low frequencies. Numerically, we may compare this 
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FIGURE 3. As in figure 2 (c) for Pierson-Moskowitz spectrum, comparison the nonlinear transfer for 
integration grids (i,;, A ) ,  using x , (115, 60, 70); 0,  (78, 30, 50); +, (48, 20, 30); 0,  (29, 10, lo), 
where i is the number of wavenumber bins, 2; is the number of angular bins from - 120' to + 120' 
and A is the number of points on the locus. 

Spreading 
Case? function Peakedness 

2 
2 - c052 8 3.3 

K 

3 
8 
- C O S ~  8 
3rr: 

3.3 

13 1 .o 
K 

2 
15 - c052 8 7 .O 

n 
t From Hasselmann & Hasselmann (1981). 

TABLE 1.  Parameters for comparative spectra 

flux divergence with the Boltzmann integral (2.3) for nonlinear transfer. Using the 
radial polar geometry of figure 1, we estimate the flux divergence centred between 
radial grid points where nonlinear transfer source term estimates are made, 

Consequently, in regions of rapid nonlinear variations, the two calculations deviate 
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FIGURE 4. (a) A comparison between A, flux divergence, calculated by ( 3 4 ,  and 0,  the Boltzmann 
integral of (2.3), for Hasselmann & Hasselmann (1981) case 2. ( b )  As in (a) for Hasselmann & 
Hasselmann (1981) case 3. 

slightly. As seen in figures 4(a) and 4(b), flux divergence estimates are a good 
approximation to estimates obtained directly from the Boltzmann integral. This 
confirms that the integration method for energy fluxes is properly posed and that the 
numerical technique has adequate detail. 

Two-dimensional computations of an(k)/at, comparable with Webb (1978), are 
shown in figure 5 .  Two-dimensional energy fluxes through the wave spectrum can 
also be computed at  each grid point and may be represented in terms of a flux 
density. For example, the action flux density into an element of phase space centred 
on k, is 

rd(kl) = sT(kl? k3) '31 dk3, (3.7) 

expressed in terms of a unit vector k,, in the direction kl-k3 and the transfer 
integral T(k,, k,) defined in (2.4). The action flux in the positive x-direction into an 
element of phase space dk, centred on k, is therefore 

C(k1)  = dk, T(k1, k3) cosO3, dk3, (3.8) s 
and so forth for other components. Only contributions to the integral are allowed for 
which T(k,, k3) COSO,, is positive, where O,, = arctan [(kzl-kZ3)/(kul-ku3)]. The 
usual Green's relation relates flux divergence to the energy change due to nonlinear 
wave-wave transfer. We plot the action flux density vectors in figure 6. These are for 
the high-frequency region of the spectrum considered in figure 2(a) using a 
' moderate ' resolution grid (50, 31, 46) : 50 frequency bins, 4" discretization within 
the angular domain ( -  120°, + 120") and 46 points on the locus-resonance condition 
(2.5). It is evident that there is little nonlinear transfer outside the angular domain 
( - 120°, + 120") and no flux across the x-axis. 
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FIGURE 6. The two-dimensional nonlinear energy fluxes through the spectrum in the 
high-frequency region of the spectrum in figure 2 (a). The magnification factor is 1.4 x lo7 
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FIGURE 7. (a) Variations of energy flux to high frequencies P, with different equilibrium range 
power laws normalized by the value each has a t  1.6 fp : 0, for f 2 ,  A, forf3 ; + , forf4 ; x , for f 5  ; 
0, for f’. Other parameters are fp=0 .3 ,  y =  1.214, a,u=0.01, a , = O . O 7 ,  ab =0.09 and 
directional spreading is cos2 8. (b) Variations of energy flux to low frequencies r, it8 a function of 
equilibrium range power law as in (a). 

4. Basic scaling behaviour of nonlinear fluxes 
4.1. Flux dependence on power laws in the equilibrium range 

To examine the energy flux behaviour for different equilibrium range power laws, we 
consider simple specta of the form 

E( f, e) = Aa, qf I,+ - C O S ~  0, K) 
where m is a positive integer, a, u is a dimensional constant with units of lengthltime, 
A is a directional normalization constant satisfying 

and ~ is a non-dimensional shape function specified by the usual JONSWAP-type 
parameters (3.1)-(3.4), and prescribed in subsequent sections. Experimental evidence 
suggests that  the equilibrium range exists in a subrange of the spectrum from 
approximately 1.6 fp to 2.6 f,. To accentuate the divergence aspects of energy fluxes, 
we normalize all fluxes for a given power law by its value at the low-frequency limit 
of the equilibrium range (i.e. a t  about 1.6 f,). Figures 7 ( a )  and 7 ( b )  show the 
behaviour of these normalized fluxes to high frequencies P,(k) and low frequencies 
FE(k)  for various power laws. Unless otherwise specified, parameters are fp = 0.3, 
y = 1.214, aIu = 0.01, ua = 0.07, ub = 0.09 and directional spreading is cos2e in this 
and subsequent sections. For a constant energy flux through the equilibrium range 
of the spectrum, the normalized fluxes should retain a value of approximately 1. 
However, as can be seen in figure 7, the fluxes are approximately constant only for 
an f spectrum. Spectra with f 2  and f equilibrium ranges have fluxes which 
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FIGURE 8. Variations of energy flux to high frequencies PE, and to low frequencies rE, as a 
function of different peak frequencies: 0.2, 0.3, 0.4 Hz. 

increase with increasing frequency. Spectra with f and f equilibrium ranges have 
fluxes which decrease with increasing frequency. 

The calculations shown here provide additional support for the existence of an f 
equilibrium range in wave spectra. For the remainder of this study, we restrict 
ourselves to analyses of spectra with f equilibrium ranges. The equation for this 
class of spectra is 

As discussed in Resio & Perrie (1989), a judicious selection of parameters makes such 
a form equivalent to  the JONSWAP spectral form. 

4.2. Flux dependence on variations in peak frequency 

To investigate the behaviour of energy fluxes through the equilibrium range as a 
function of peak frequency, we consider spectra of the form (4.3) with + given by 

Integrations for peak frequencies fp of 0.2, 0.3 and 0.4 show that energy fluxes are 
identical when plotted as a function of f / f p .  Figure 8, which appears to contain only 
two curves, actually contains plots for the fluxes to both high and low frequencies 
through all three spectra. 

This may seem surprising a t  first, since Hasselmann et al. (1973) established that 
nonlinear transfer due to wave-wave interactions is dependent on fp. However, the 
frequency axis in figure 8 is scaled by fp. The nonlinear transfer source function for 
these spectra has the form 

YIll (4.5) 
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FIGURE 9. (a) Variations of energy flux to high frequencies PE with peakedness : 0,  for y = 0.65 ; 
A, for y = 1.0; +, for y = 1.55; x , for y = 2.30; 0, for y = 3.25. ( b )  Variations of energy flux to 
low frequencies I-% with peakedness as in (a). 

whereas for an f spectrum 
yn, -h4* 

4.3. The injluence of the spectral peak: onjluxes 
In this section we consider the influence of the sharp energy cutoff below the spectral 
peak as well as the manner in which variations in spectral peakedness affect energy 
fluxes .through the spectrum. Our spectra are of the form (4.2), with 41. given by 

where 

and y is a non-dimensional peakedness parameter. 
The variation in energy fluxes for y = 0.65, 1.0, 1.55, 2.30 and 3.25 is shown in 

figure 9. This range of y corresponds to the measurements of Donelan, Hamilton & 
Hui (1985). Figure 10 show the corresponding nonlinear energy transfer for these 
spectra. A notable feature is the shift of the positive lobe toward higher frequencies 
as y decreases, particularly when y becomes less than 1. The associated transfers of 
action and momentum to the forward face also vary markedly as a function of y. This 
is an important mechanism in controlling wave growth and possibly the evolution 
into a fully-developed spectral form. 

Approximations by Kitaigorodskii (1983) and Resio (1987) concerning equilibrium 
range fluxes neglected consideration of the extent to which energy transfers are 
influenced by the spectral peak and the associated cutoff energy on the forward face 
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of the spectrum. Experimental results suggest large departures from equilibrium 
range for frequencies less than l.6fp (figure 15 in Donelan et al. 1985). To examine the 
influence of the spectral peak, we consider normalized energy fluxes through the 
spectrum as a function of non-dimensional frequency f/fp. The normalization is that 
proposed for equilibrium range fluxes by Resio (1987) where it was shown that 
energy fluxes in the equilibrium range should vary as 

g2F3(k) k9 
a 3  

r , ( k )  x e (4.9) 

letting F ( k )  be the one-dimensional energy density in wavenumber space and e, a 
non-dimensional constant. We therefore define normalized energy fluxes to be 

(4.10) 

Figure 11 shows the behaviour of f i ( k )  as a function of f/fp for different values of 
y .  From figure l l (a) ,  the normalized flux to high frequencies e ( k )  attains 
equilibrium range values that are essentially independent o,f y by f/fp x 2.3. Figure 
11 ( b )  implies that  the normalized flux to low frequencies F E ( k )  attains equilibrium 
range values that are essentially y independent by f/fp w 1.5. 

Finally, we consider the magnitude of nonlinear energy fluxes and their associated 
source terms as a function of spectral peakedness. Hasselmann et al. (1973) suggest 
that as the peakedness of the spectrum increases, the source functions become larger. 
While this may be true, the mechanism behind it may not be the ‘sharpness’ of the 
spectrum. It may be due to the fact that, in the spectral parameterization used in this 
study and by Hasselmann et al. (1973), the absolute magnitude of the energy 
densities in the region of the peak increases with increasing y .  As these energy 
densities increase, their contributions to the nonlinear fluxes increase by F3(k)  and 
the divergences of the fluxes also increase. 
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FIGURE 1 1 .  (a) Variations in non-dimensional flux to high frequencies R ( k )  with respect to 
peakedness as in figure 9, plotted against flf,. PE(k) is np-dimensionalized according to (4.10). (6) 
Variations in non-dimensional flux to low frequencies rE(k) with respect to peakedness as in (a). 
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FIGURE 12. Variation of spectra with respect to peakedness as in figure 9. All spectra are 
normalized to have the same maximum. 

A related concern is therefore whether or not source terms and fluxes become 
larger for different peakedness values, given the same energy density at  the spectral 
peak. To answer this, we performed integrations for spectra defined by (4.3), 
(4.7)-(4.8) and normalized to have the same spectral energy a t  the peak. Figure 12 
shows the spectral shapes for various y generated in this manner. The fluxes and 
associated nonlinear energy transfer terms are shown in figures 13 and 14 
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FIQURE 13. (a )  Energy fluxes to high frequencies PE(k) corresponding to spectra of figure 12 as a 
function of peakedness as in figure 9. ( b )  Energy fluxes to low frequencies rE(k) as a function of 
peakedness as in (a). 
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FIGURE 14. Nonlinear transfer corresponding to the spectra of figure 12. 

respectively. It is evident that, with the same energy density a t  the spectral peak, 
the magnitude of both the fluxes and the source terms are larger for broader spectra 
than they are for more sharply peaked spectra. 

4.4. Eflects of angular distribution of energy on energy Jluxes 

The parameterization of spectral peakedness presented above gives an indication of 
the manner in which the gradient of energy density as a function of frequency f, can 
affect energy fluxes through a spectrum. For a given frequency, the gradient of 
energy density with angle 0 can also affect energy fluxes through a spectrum. Thus 
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FIQURE 15. (a)  Energy fluxes to high frequencies PE(E(k) as a function of angular spreading cosZn 0: 
x , for n = 1 ; +, for n = 2; A, for n = 4;  0,  for n = 8. ( b )  Energy fluxes to low frequencies ra(k) 
as a function of angular spreading as in (a).  

far, we have only considered spectra with a cos2 8 angular distribution. Although it 
may be instructive to analyse spectra with f- and &dependent spreading functions 
as presented by Mitsuyasu et al. (1975), Hasselmann, Dunkel & Ewing (1980) and 
Donelan et al. (1985), for simplicity we examine only spreading functions which are 
independent off. 

Using the spectrum (4.3) and (4.7)-(5.8) with a4u = 0.01, fp = 0.3, y = 1.214, 
ua = 0.07 and u,, = 0.09, integrations were made with normalized C O S ~ ~  8 spreading 
functions, letting n equal 1, 2, 4 and 8. As shown in figure 15, energy fluxes are 
dependent on the angular spreading function and increase as n increases. The 
dependency is not as strong as in the case of spectral peakedness although the range 
of variation was taken to cover the range that could be expected to occur in nature. 
The equilibrium range first occurs a t  f/fp x 2.0 for the flux to high frequencies PE(k) 
and somewhat earlier at  f/fp x 1.5 for the flux to low frequencies rE(k). 

4.5. Variations in nonlinear Jluxes due to the equilibrium range coeficient 
It is apparent from the algebraic structure of the density function 93 as shown in 
(2.2), that any multiplicative factor introduced into a spectral density manifests 
itself as the cube of that factor in 9. As this is used later, we numerically demonstrate 
this. Figure 16 shows the calculated energy fluxes for a referencef4 spectrum with 
parameter a4 u = 0.01, fp = 0.3, y = 1.21, ra = 0.07 and r,, = 0.09. Energy fluxes are 
also presented for spectra with identical parameters except that a4u = 0.03. 
Dividing the fluxes of the second computation by 27 makes the two curves exactly 
the same. 

4.6. Numerical evaluation of the non-dimensional flux coegicients 
Figure 9 showed that the flux to high frequencies PE(k) attains equilibrium range 
values that are independent of peakedness y by f/fp x 2.3 and the flux to low 
frequencies rE(k) attains equilibrium range values that are y independent by f/fp x 
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FIGURE 16. (a) Variation of energy fluxes t o  high frequencies JYE(k) with a4u: 0, for a4u = 0.01; 
A, for a4u = 0.03. The plots differ by a factor of 27. (b) Variation of energy fluxes t o  low frequencies 
I&k) as a function of a4u as in (a). 

1.5. Figure 8 shows that these fluxes are independent of the location of fp. Therefore, 
for a given angular spreading function, whether or not frequency dependent, energy 
fluxes in these equilibrium ranges are only dependent on the equilibrium range 
coefficient. This supports the estimates for energy fluxes through the spectrum made 
by Kitaigorodskii (1983) and Resio (1987), based on arguments that the fluxes should 
approximately balance energy input by wind. 

Energy flux estimates (4.9) expressed in terms of frequency, may be represented 
as 

(4.11) 

where ' + ' refers to fluxes from low to high frequencies, ' - ' refers to fluxes from high 
to low frequencies, #+ is a non-dimensional shape function and ef is a non- 
dimensional constant. As $* = 1 in the equilibrium range, e+ has the same meaning 
as e in (4.9). 

Substituting the appropriate equilibrium form for E ( f )  from (4.3) into (4.11) 
yields, 

a: u ~ ( ~ R ) ~ A ~  

89 
fi(f) = €+ (4.12) 

which, as shown in figure 9, represent good approximations for all spectra of the form 
(4.3). Since u4u is a known quantity in our integrations, we can explicitly evaluate 
e f .  We find 

ek z 60 (4.13) 

making the evaluation a t  about the midpoint of the equilibrium range. This is 
consistent with the earlier estimates of Resio (1987). 
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FIGURE 17. For caption see next page. 
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FIGURE 17. (a)  The time evolution of one-dimensional energy E ( f )  in the absence of 9’,44, and Yds. 
The integration grid is (48, 20, 30) with 15 s timesteps. 0, 15 s;  +, 1 h ;  0, 3 h ;  x ,  11 h. ( b )  As 
in (a ) ,  the total energy E, variation with time. ( c )  As in (a) ,  the variation of the nonlinear energy 
transfer Y,,, with time. 

5. Spectral evolution in time 
5.1. Evolution of energy and nonlinear transfer in time 

With respect to  space and time, the spectral energy density E( f, 0) from (4.3) in deep 
water evolves as 

where y,,, is the wind input spectral energy, Ynl is the nonlinear transfer due to 
wave-wave interactions and Yds is the wave breaking dissipation. We compute the 
time evolution of one-dimensional energy E( f ), total energy E, and nonlinear 
transfer Ynl in figures 17 (a) ,  17 ( b )  and 17 (c), in the absence of Yin and YdS. Our 
integration grid is (48, 20, 30), with 30 s timesteps and an initial spectrum as shown 
in figure 17 (a) .  We model the spectrum above 2fp with an f tail to reduce computer 
requirements. 

The time progression of the spectrum is presented in figure 17 (a) .  Influenced only 
by wave-wave interactions, the spectrum initially steepens and the peak migrates to 
lower frequencies. However, because the integration grid extends over only a finite 
range on the frequency axis, total energy slowly decreases as energy is fluxed to the 
high-frequency boundary of the grid and is lost to the next timestep of the 
integration. Thus, the peak of the spectrum decreases with time after about an hour. 
The time evolution of total energy E ,  in figures 17 ( b )  is a further reflection of the loss 
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FIGURE 18. (a) Evolution of the energy spectrum in response to a 10 x perturbation at  3fp where 
the spectrum is denoted by: 0 ,  initially; + , after 1 min; 0, after 2 min; x , after 3 min. ( b )  As 
in (a) in response to a 5 x perturbation at 2fp where the spectrum is denoted by : 0, initially ; + , 
after 2 min; 0, after 4 min; x , after 6 min. (c) As in (a) in response to a 3 x perturbation at  1.5jp 
where the spectrum is denoted by: 0,  initially; + , after 10 rnin; 0, after 20 min; x , after 30 min. 
(d )  As in (a) in response to a 2 x perturbation a t  Hf, where the spectrum is denoted by : 0, initially ; 
+ , after 20 min ; 0, after 40 rnin ; x , after 60 min. 



Numerical study of nonlinear energy Juxes. Part 1 625 

of energy due to  finiteness of the grid. Finally, in figure 17 (c) we see the evolution of 
the corresponding nonlinear transfer Ynl. Owing to a diminished spectrum, Yn, 
decreases drastically as time increases and migrates to lower frequencies following 
the migration of the spectrum. 

5.2. Response to perturbations in the spectrum 
It is important to investigate the response of the nonlinear energy transfer to 
perturbations within the spectrum in order to assess the rate a t  which a spectrum 
relaxes toward a quasi-stationary state. We compute the time evolution of one- 
dimensional energy E ( f )  using a (48, 20, 30) grid with initial spectral parameters as 
in $5.1, I n  figure 18(a), we introduce a 10 x perturbation at 3fp. Using 15 s timesteps 
and integrating over the entire frequency domain (without using an f4 tail as 
in §5.1), we see that within 3 min the nonlinear interactions have reduced the 
perturbation to  less than 90 % of its original magnitude and distributed the energy 
among neighbouring spectral energy bins. Figure 18 ( b )  presents a 5 x perturbation 
at  2fp. I n  this situation, the nonlinear interactions essentially remove the 
perturbation within 6 min. In figure 18(c) a 3 x perturbation at 1.5fp is removed in 
30 min. Finally in figure 18 ( d )  a 2 x perturbation a t  gp requires 1 h before nonlinear 
interactions have removed approximately 90 % of it. 

From figure 3, our investigations show that the nonlinear energy transfer should 
be smooth, even for very coarse integration grids. We have demonstrated that 
nonlinear wave-wave interactions work to  smooth perturbations introduced into the 
spectrum as spikes. Clearly the time taken for the nonlinear interactions to respond 
to  any perturbation depends strongly on where it occurs within the spectrum. 

5.3. Relaxation times within the equilibrium range 

An alternate view of the spectral response to perturbations within the equilibrium 
range may be presented in terms of relaxation times within the equilibrium range. I n  
a manner typical of many others. Kitaigorodskii (1983) estimated relaxation times 
for wave-wave interactions in terms of energy density and rate of change of energy, 
at a given frequency 

E(f)  

at 
y=aE(f) 

Unfortunately, the denominator of (5 .2)  becomes very small in the equilibrium range 
and the estimated relaxation time becomes arbitrarily large. Therefore we propose a 
different form based on energy fluxes 

(5.3) 
€ 

Y =  
ryE+ly 

where € is the total energy in the region of the spectrum being considered, 

and fi and f i  are the appropriate upper and lower frequency limits of the equilibrium 
range. This definition relates relaxation time to the time required for nonlinear 
energy fluxes to  remove all the energy from a specific region of the spectrum. This 
is a physically consistent approach to estimating the relative strength of the 
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FIQURE 19. (a)  Relaxation time defined by (5.3) as a function of a4u: 0 ,  y = 1; +, y = 2 ;  
0,  y = 5 ;  x , y = 10. ( b )  As in (a )  as a function off,. 
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nonlinear fluxes and is motivated by (3.5) relating the nonlinear transfer Ynl to 
spectral fluxes. 

To investigate the sensitivity of relaxation times defined by (5.3) with respect to 
peakedness y ,  peak frequency fp and a4u, we combine (4.3), (4.12), and (5.3) and infer 

where d is a non-dimensional constant depending on fi, fi and spectral peakedness 
y .  Assuming an equilibrium range between l.6fp and 2.5fp, figure 19(a) shows the 
variation of 9- with a4 u and y ,  computed in the middle of the equilibrium range from 
(5.3). Similarly, figure 19(b) shows the variation of F with respect to fp and y. The 
agreement between (5.5) and figures 19 (a )  and 19 ( b )  is remarkable. The exponents for 
fp and a4 u in (5.5) are obtained to 3 decimal places with correlation coefficients that 
are very near one. Relaxation times in these computations are seen to correspond to 
the results of the previous section. The mid-range abscissa in figure 19(a) is 
appropriate for wind speeds from 12 to 20 m s-l with fp = 0.3. 

6. Conclusions 
A different perspective for nonlinear energy transfer due to wavewave 

interactions in a spectrum has been suggested. Formulating an efficient numerical 
integration scheme for the nonlinear energy transfers first described by Hasselmann 
(1961), we calculated energy fluxes through the spectrum and the spectral evolution 
with time. The divergence of these fluxes is the conventional ‘source term’ 
formulation used in past parameterizations of nonlinear transfer due to wavewave 
interactions. Moreover, fluxes appear to provide an important understanding of 
overall energy exchanges among various regions of the spectrum. We make the 
following conclusions : 

(i) As described by Zakharov & Filonenko (1968), Kitaigorodskii (1983) and Resio 
(1987), and seen in figure 7, energy fluxes through the equilibrium range of a 
spectrum are approximately constant only for an f4 spectrum, at  frequencies 
sufficiently above the spectral peak. 

(ii) Fluxes through a spectrum are independent of fp, as seen in figure 8 ; nonlinear 
energy transfers for an f spectrum therefore scale as a3&l rather than a 3 c  as in the 
case of a n f 5  spectrum. 

(iii) Energy fluxes through the equilibrium range are independent of spectral 
peakedness and depend only on the local energy densities. This is evident in figure 
9 and also the non-dimensional curves of figure 11. The lobes of the corresponding 
nonlinear energy transfers shift to higher frequencies with decreasing peakedness, 
particularly when peakedness is less than 1.0. 

(iv) Decreasing peakedness while holding the energy of the peak constant leads to 
decreased sharpness, broader spectra, enhanced energy fluxes and nonlinear energy 
transfers. Concomitantly, the peaks of the lobes migrate to higher frequencies. This 
is shown in figures 12-14. 

(v) Variations in peakedness produce more significant changes in energy fluxes 
than do variations in angular spreading. This compares figure 9 to figure 15. In either 
case, the range considered was taken to cover what could be expected to occur in 
nature. 

(vi) The nonlinear energy transfer should be smooth, as shown in figure 3, even for 
very coarse integration grids. Section 5.2 demonstrated that wavewave interactions 
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work to  smooth perturbations introduced into the spectrum as spikes. The time 
taken for the nonlinear interactions to respond to any perturbation depends strongly 
on where it occurs within the spectrum. 

(vii) Computations of relaxation time, expressed as the quotient of the equilibrium 
range energy by the sum of energy fluxes, agree well with equilibrium range flux 
parameterizations, as shown in figure 19. The more usual expression for relaxation 
time is the quotient of the equilibrium range energy by the nonlinear energy transfer 

We are motivated by these results to expect that it is possible to include the 
complete Boltzmann integral for nonlinear wavewave interactions in a research 
wave model using the integration method of this paper. This approach should be an 
improvement over the present parameterizations of nonlinear transfer due to 
wavewave interactions. Although the computer time required for this may still be 
prohibitive for operational wave modelling, it should be possible to investigate 
simple fetch- and duration-limited wave growth situations. 
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The unsteady boundary layer of a rotating, stratified, viscous, and diffusive flow 
along an insulating slope is investigated using theory, numerical simulation, and 
laboratory experiment. Previous work in this field has focused either on steady flow, 
or flow over a conducting boundary, both of which yield Ekman-type solutions. After 
the onset of a circulation directed along constant-depth contours, Ekman-type flux 
up or down the slope is opposed by buoyancy forces. In the unsteady, insulating case, 
it is found that the cross-slope transport decreases in time as ( t / T ) - i  where 

1 l/a+S 
= S ’ f c o s a ( ~ ) ~  

may be called the ‘shut-down’ time. Here S = (Nsina/fcosu)2, f is the Coriolis 
frequency, u is the slope angle, N is the buoyancy frequency, and a is the Prandtl 
number. Subsequently the along-slope flow, 8, approximately obeys a simple 
diffusion equation 

where t is time, v is the kinematic viscosity, and ẑ  is the coordinate normal to the 
slope. By this process the boundary layer diffuses into the interior, unlike an Ekman 
layer, but at a rate that may be much slower than would occur with simple non- 
rotating momentum diffusion. The along-slope flow, 6, is nevertheless close to 
thermal wind balance, and the much-reduced cross-slope transport is balanced by 
stress on the boundary. For a slope of infinite extent the steady asymptotic state is 
the diffusively driven ‘ boundary-mixing ’ circulation of Thorpe (1987). By inhibiting 
the cross-slope transport, buoyancy virtually eliminated the boundary stress and 
hence the ‘fast’ spin-up of classical theory in laboratory experiments with a bowl- 
shaped container of stratified, rotating fluid. 

1. Introduction 
1.1. Ekman layer on a slope with stratijcation 

The Ekman layer has a cross-isobar transport (the ‘Ekman transport ’), which, if 
horizontally divergent, drives a vertical velocity out of the boundary layer. This 
vertical velocity stretches or shrinks vortex lines in the interior, and the boundary 
layer may thereby affect large-scale atmospheric or oceanic flows, a process called 
‘ spin-up ’. The review article by Benton & Clark (1974) gives the early history of spin- 
up in many different contexts. If the fluid is stratified and the boundary is sloping, 
then buoyancy forces may impede the Ekman transport, lessening the vertical 
velocity, and significantly decreasing the effect of the boundary on the interior. In  
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this paper we derive a theory of the boundary layer for rotating, stratified flow along 
a slope and then compare this theory with numerical and laboratory experiments. 

Several authors have considered the flow of a rotating, stratified, viscous fluid over 
topography. By ‘topography ’ we mean any boundary whose normal is not parallel 
to gravity. Fluid over such terrain may have isopycnals intersecting the slope, and 
hence there will be gradients of density on the slope. Above a flat boundary, scaling 
arguments (Pedlosky 1987, pp. 360-362) suggest that, if buoyancy and Coriolis 
forces are comparable in a depth H (the vertical scale of the interior flow), then 
buoyancy may be negligible within a boundary layer much thinner than H .  This 
argument is often used (e.g. Pedlosky 1987, equation 6.6.9) to  justify the use of 
simple Ekman theory for oceans or atmospheres with sloping lower boundaries. With 
a sloping boundary, however, persistent advection of buoyancy contrasts may 
eventually introduce significant new effects. The key effect is the excursion of fluid 
particles within the boundary layer, which tends to  be far larger than that in the 
interior. During spin-up, for example, the classic solution without stratification 
shows excursion of near-boundary fluid through a distance L(eH/6) ,  which may 
readily exceed L ,  the lateral scale of the flow. Here 6 is the thickness of the Ekman 
layer, (v/52)$, where v is the kinematic viscosity, and 52 is the rotation rate of the fluid. 
The Rossby number, E ,  is U/QL, where U is the scale of the horizontal velocity. 
Although E is typically small for large-scale geophysical flows, H / 6  is typically large. 

Holton (1967) first solved for a ‘buoyant ’ Ekman layer when studying atmospheric 
flow over the Great Plains of the United States, a region of gradually sloping terrain. 
The density in Holton’s model boundary layer has diurnal radiative forcing, with a 
specified temperature (and hence density) at the ground. An along-slope, geostrophic 
wind is specified in the interior. He finds that the boundary layer is a modified 
Ekman spiral, plus a thermally driven diurnal oscillation. The effect of the slope 
combined with the stratification is to create a buoyancy force which decreases the 
magnitude of the diurnal oscillation. Yet there is also a steady cross-slope transport 
associated with the mean along-slope wind. This steady transport is possible because, 
for example, as the Ekman transport drives cold, heavy air up-slope, this air is 
warmed by internal diabatic heating, forced by the temperature boundary condition. 

Hsueh (1969) also solved for a buoyant Ekman layer, again specifying the flow in 
the interior and the temperature at the boundary. His analysis is for shallow slopes 
(a < 1, where a is the slope angle from horizontal) and allows horizontal variation of 
the slope. His solution is similar to an Ekman layer, but of reduced thickness: 
6( 1 + a(d / j )2 ) - i ,  where a is the Prandtl number, v /K ,  and K is the density diffusivity. 
N is the buoyancy frequency, and f is the Coriolis frequency, 252. As in Holton’s 
solution a steady up-slope transport is allowed by the diffusion of heat to or from the 
boundary. 

If the sloping boundary is insulating instead of conducting, the buoyancy can no 
longer adjust as fluid moves up- or down-slope, except in the presence of diffusion to 
the interior. The cross-slope buoyancy flux must nevertheless enter into the force 
balance. Siegmann (1971), considering stratified spin-up in a spherical container with 
conducting walls, suggests that if the walls are insulating rather than conducting 
then there may be no order-one fast spin-up, since cross-slope boundary layer 
transport will be suppressed by the buoyancy. Our laboratory experiments ($5)  show 
this to be largely correct in the limit of strong stratification and steep walls, but even 
in this limit there were unexpected results. For example, we found that the boundary 
layer was no longer confined to the narrow Ekman layer thickness, but instead 
diffused far into the interior. 
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Weatherly & Martin (1978) developed a numerical model of the turbulent 
boundary layer along a sloping ocean bottom, comparing it with data from the 
Western Atlantic on the continental slope. They account for buoyancy forces in their 
calculation, and one may observe in their model results (see their figure 9) a gradual 
slowing of the up-slope Ekman transport, although the calculation is not carried very 
far in time. 

Above an insulating slope, such as the ocean floor, the boundary conditions for 
temperature and salinity require that isopycnal surfaces lie normal to the boundary. 
This is accomplished by diffusion, but the resulting tilted isopycnals are not in 
balance with buoyancy forces. For a non-rotating fluid the result, Phillips (1970), is 
a steady up-slope boundary layer current wherein up-slope advection of the density 
gradient exactly balances the diffusive down-slope density flux. Oceanographic 
attention has been focused recently on this class of ‘self-propelled ’ boundary-layer 
flows (Phillips, Shyu & Salmun 1986; Thorpe 1987, and Garrett 1990) because of the 
possibility that enhanced mixing occurs a t  ocean boundaries. Diffusively driven 
flows on sloping boundaries may both mix stratified fluid and exchange fluid with the 
interior. 

Thorpe (1987) discussed the boundary layer of a rotating, stratified, viscous, 
diffusive flow along an insulating slope of constant angle and infinite extent. His 
solution plays an important role in the time-dependent model developed below in 
52. It is steady, with a vertical structure much like Hsueh’s (1969) solution. Yet on 
application of the insulating boundary condition Thorpe finds that the interior flow 
far from the boundary is specified as a part of the solution. Thus, while steady 
solutions exist for any interior flow if density is specified at the boundary (as we see 
in Holton 1967 and Hsueh 1969), there is only one interior flow that has a steady 
boundary layer in the insulating case. Thorpe, like Holton, also presents an 
oscillatory solution, but i t  must oscillate about the steady solution, and the time- 
averaged properties are unchanged. For uniform v and K ,  the steady flow in Thorpe’s 
solution is one that leads to an up-slope transport. This up-slope flow is allowed 
because it is balanced by a diffusive down-slope density flux, driven by the density 
boundary condition, as in the non-rotating solution of Phillips (1970). The 
boundary layer is, like the Ekman layer, confined to a thin region, and is unable to 
alter the interior except through meridional circulation. 

The diversity of steady solutions in the literature, corresponding to different 
boundary conditions and values of r, suggests the need for a theory with more than 
oscillatory time-dependence. What happens, for example, when an interior along- 
slope flow is ‘switched-on ’ to a value different than Thorpe’s ? At one extreme (early 
time) the problem yields Ekman theory, in which the interior flow controls the 
boundary layer, which then feeds back on the interior by Ekman pumping. At the 
other extreme (late time) lies Thorpe’s solution, where a steady boundary layer 
requires a particular value of the interior velocity, although how this state comes 
about is unclear. In more general applications, the presence of other insulating 
boundaries will cause the fluid eventually to be well-mixed and at rest, in the absence 
of sources or sinks of momentum or buoyancy. This suggests that it is crucial to know 
the rate of establishment of the quasi-steady Ekman- and boundary-mixing 
solutions, for they must compete with the external forcing affects that maintain the 
circulation and stratification of the fluid. We can anticipate a strong dependence on 
IT, and in particular a weakness of the boundary-mixing circulations for the large 
values of r typical of laminar conditions in laboratory experiments. 
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1.2. Classic spin-up 
While the boundary layer is accessible to theory and numerical solution, its small size 
makes visualization difficult in laboratory experiments. But we may readily observe 
the large-scale effects of boundary-layer transport in spin-up experiments. In  the 
classic spin-up problem (Greenspan & Howard 1963) a right circular cylinder filled 
with homogenous, incompressible, viscous fluid is rotating initially a t  angular 
velocity SZ. The cylinder is then impulsively accelerated to  a slightly greater angular 
velocity SZ+AQ. I n  a time O(l2-l) an Ekman layer forms on the bottom boundary 
(we take the top to be a free surface). The ensuing Ekman transport drives a 
meridional circulation involving radial and vertical velocities in the interior. The 
interior fluid never directly feels the effects of viscosity, and approaches the new 
rotation rate in a timescale E-iSZ-’, where E is the Ekman number, ( 6 / H ) 2 ,  and H is 
the height of the cylinder. For small Ekman number this spin-up timescale is much 
faster than that for penetration of viscous effects into the interior, E-lSZ-’. For 
typical laboratory parameters (v = 0.01 em2 s-l, 52 = 1 s-l, H = 10 em) the ‘fast’ 
spin-up occurs in 100 s, whereas the viscous timescale is nearly three hours, and this 
contrast is magnified in flows of geophysical scale. 

It is essential to incorporate stratification if spin-up is to apply to atmosphere and 
ocean flows. Holton (1965) divides the equations of motion into interior and 
boundary-layer parts, scaling vertical derivatives in the boundary layer as E-4 
greater than those in the interior. He takes the timescale of the problem to be the 
‘fast’ spin-up time, E-k-’ ,  based on the results of Greenspan & Howard (1963), and 
expands all dependent variables in powers of Ei, the obvious small parameter of the 
problem. 

The primary result of Holton’s analysis is that the ‘fast ’ spin-up process no longer 
extends through the entire depth of the fluid, but is confined by the buoyancy within a 
‘Prandtl scale’ H ,  = f L / N  above the bottom boundary (the subscript P is for 
Prandtl). L is the horizontal lengthscale of the forcing, typically the tank radius. 
Holton also finds that stratified spin-up is faster than in the homogenous case, owing 
to the reduced height of penetration, H,. At the end of the ‘fast ’ spin-up process the 
fluid in the interior has considerable vertical shear, which is removed by viscosity. 
Diffusive effects a t  O(Ei) and O(E) were considered by St-Maurice & Veronis (1975), 
who find both a gradual migration to a diffusively controlled interior, and 
modification of the ‘fast’ spin-up by viscosity. 

Spin-up theory has provided justification for a simple parameterization of bottom 
boundary friction of geophysical flows, essentially as a surface drag that is linear in 
the geostrophic velocity. Numerical and analytical models of large-scale flow thus 
often assume that relative vorticity decays exponentially with timescale E-k-’,  
rather than resolve the boundary layer itself. The exact timescale is, in practice, 
difficult to determine because 6 and H ,  are hard to  measure, but their variation is not 
so great as to make the theory unworkable. 

I n  $2 we develop the boundary-layer equations, and derive approximate time- 
dependent solutions for an insulating boundary with constant v and K ,  and an 
impulsively started interior flow. We compare these to numerical solutions to the full 
one-dimensional problem in $3. The balance of the paper is a description and 
discussion of laboratory experiments. We carried out stratified spin-up experiments 
in a container with a sloping bottom boundary, using stratification large enough to 
inhibit Ekman transport well before ‘fast ’ spin-up could influence the interior flow. 
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2. The time-dependent Ekman layer with stratification 
2.1. Development of the equations 

The equations of motion and mass conservation for a Boussinesq, incompressible 
fluid, in a reference frame rotating at angular velocity Qk may be written as 

( 2 . 1 ~ )  

(2.1 b)  

V - u  = 0. (2.lc) 

Here u is the velocity vector (u, v, w) in Cartesian coordinates (x, y, z ) ,  V is the 
gradient (a/ax, slay, a/az), dldt is the material derivative a p t  + u . V ,  k is the vertical 
unit vector ( O , O ,  l), and g is gravity. 

The density p has been separated into three parts such that 

p = P0+P(4+P’(X9Y,Z,t). (2.2) 

We wish to consider a system with small density variations from the mean, p,,, hence 
p’ -4 po and p -4 po. We allow p’ to be as large as p ,  so that the time-dependent density 
variation could, for example, overwhelm the static stability of the stratification. We 
define the buoyancy frequency by 

p=--- 9 aP 
Po 8.2 * 

We take N to be constant in our analysis. 
The pressure p is separated into two parts: 

The z-dependence of p is taken to be hydrostatic, hence 

_- a? - g ( p 0 + P ) .  
aZ 

The z-dependence of p is used to introduce an along-slope geostrophic velocity, V ,  in 
the interior, given by 

V is constant in both time and space (after time t = 0) ,  and is specified as an initial 
condition of the problem. 

We want to describe the development of the boundary layer for flow along a slope. 
Following Phillips (1970) we simplify the problem by considering flow along a 
boundary of constant slope, tan a. While this one-dimensional geometry also 
eliminates boundary-layer divergence, parametric variations of interior velocity or 
slope can later incorporate this ‘pumping’, which is crucial to classic spin-up. We 
then rotate the equations into the slope frame of reference, as defined in figure 5 (b ) .  
All variables in the new frame of reference will be denoted by A. The rotated velocity 
vector components are the up-slope velocity 12, the along-slope velocity 6, and the 
velocity normal to the slope, 6, in the corresponding Cartesian coordinate system, 2, 
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ij, i. We assume 6, I?, 4, p', and p' have no P or i j  variation, which is reasonable if the 
initial condition has no such variation. This assumption makes the problem 
inherently linear, and disallows velocities normal to the boundary, i.e. t2 = 0. Hence 
the solutions cannot represent the overturning of unstable stratifications. In  
geophysical boundary flows such overturning is often parameterized by increased 
eddy viscosity and diffusivity in the unstable region. For the purposes of our analysis 
we shall assume that v and K are constant, and simply point out where the solutions 
are not statically stable. 

Writing the equations in the rotated frame of reference, and adding cosa times the 
P-momentum equation to sin a times the i-momentum equation to  eliminate the 
pressure, we find 

a4 a24 
at az"2 ' 
---fcosa('U-V) = -Bsina +v- 

-++fcosazi a.; = v- a2.; 

a i 2  at 

a2B 
-- -N2sinazi+K -. i3B 
at az"2 

( 2 . 7 ~ )  

(2 .7b )  

( 2 . 7 ~ )  

We have written B for the buoyancy, gp'/po, to simplify the notation. The boundary 
conditions are 

4 = 6 = 0  at  i = O ,  ( 2 . 8 ~ )  

= N2cosa at z" = 0, (2 .8b )  

4 and B-tO as i + m ,  ( 2 . 8 ~ )  

and v"+V as ;-too. ( 2 . 8 d )  

Thus there is a no-slip velocity boundary condition, and the slope is insulating. When 
K = 0, (2 .8b )  should be replaced by 

B=O at i = O .  (2.8e) 

When a = 0, (2 .7 )  gives rise to a standard Ekman layer. When N = 0 the solution 

aB - 
ai 

is a modified Ekman layer with thickness 

8, = (2v/jcosa)t. (2 .9 )  

The subscript s indicates that  this is in the slope frame of reference. 
Buoyancy becomes important to the momentum balance through the term 

Bsin a in ( 2 . 7 a ) ,  which grows in magnitude initially by advection of the stratification, 
and by diffusion of the boundary condition. For the non-diffusive ( K  = 0) case we may 
simply estimate when buoyancy will first become important. Assuming that 
buoyancy is initially unimportant the solution will be approximately the modified 
Ekman layer of thickness 8, described above. In the boundary layer we may then 
make the scale estimates: 

(G-V) and 4 ~ - V .  (2.10) 

Integrating ( 2 . 7 ~ )  in time and using the scale estimate, the buoyancy within the 
boundary layer is approximately 

B - -  VW sin a To,  (2.11) 
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at a time T ~ .  Substituting this expression into the &momentum equation ( 2 . 7 ~ )  we 
find that the buoyancy term becomes as large as the Coriolis term when 

(2.12) 

The above derivation was based on the assumption that Ekman theory was workable 
for some time before buoyancy became important, which implies ( N / f )  t ana  4 1. If 
this were not the case then buoyancy would presumably become important while the 
Ekman layer was forming. Walin (1969) suggests that Ekman-layer theory remains 
valid if (N/  f) t ana  is small. Our scale analysis (and full theory to be presented 
below) in fact predicts that buoyancy forces eventually become substantial unless 
( N / f )  tan a is actually zero. 

2.2. Steady solutions 
Thorpe’s (1987) steady solution to (2.7) subject to boundary conditions (2.8) is 

A 2 ~ c o t a  
u=- exp ( - i /&) sin (d/6,), 

ST 
(2 .13~)  

v” = VT( 1 - exp ( - z”/6,) cos (2/6,)), (2.13 b )  

where (2 .14~)  

and vT = -2(KCOt01)8T/6i. (2.14b) 

This solution has roughly the form of an Ekman layer of thickness 6,. The subscript 
T is for Thorpe. The along-slope velocity in the interior is fixed by the density 
boundary condition to a constant value, V,. The cross-slope transport is completely 
determined by the diffusivity and the slope angle, as seen by the integral 

This result, which comes directly from integration of the steady form of (2.7c), with 
boundary condition (2.8 b ) ,  expresses the fact that for the steady problem there must 
be a global balance of advective and diffusive buoyancy fluxes. Thorpe also extends 
his solution to the case where the viscosity and diffusivity vary away from the slope, 
to represent flows with a mixed layer at the boundary. Still, it remains difficult to 
apply these solutions to geophysical situations where the along-slope velocity is 
arbitrary. Garrett (1990) has addressed this problem by suggesting that the thickness 
and diffusivity of the mixed layer may adjust to conform to the interior flow. He 
finds that it may be possible to have such a solution for arbitrary interior velocity 
V of positive sign. 

Even if the diffusivity and viscosity are variable, steady solutions still strongly 
limit the cross-slope transport. Thorpe shows that the integrated transport in this 
case (still holding N constant) is always given by K, cot a, where K, is the value of 
K as x” +oo . This would have drastic consequences for geophysical flows, through the 
fast spin-up process, if the steady solutions were always in force. Taking this as a 
caution about the applicability of steady solutions we shall explore the time- 
dependent case analytically below. 

21-2 
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2.3. Approximate unsteady solutions 
Consider a situation where, initially, 6 = B = 0, and 6 = V everywhere except a t  the 
boundary. In the absence of stratification, an Ekman layer of thickness 8, will 
develop in a time O(0-l). With stratification, buoyancy will become important in a 
time r,,, (2.12). 

Let us assume for the moment that the buoyancy has become sufficiently 
important that  the along-slope velocity 6 has come approximately into ‘thermal 
wind’ balance with the density field. This would be expressed by an approximate 
version of the &momentum equation (note that (2.16) is actually a &integral of the 
thermal wind equation) : 

(2.16) 

where U is the scale of the &velocity, 

R, = (7, f cosa)-l, (2.17) 

a temporal Rossby number, and 

E, = (8s/Du)2, (2.18) 

an Ekman number. Here 7, is the timescale of the temporal variations of 6 ,  and Du 
is the thickness of the boundary layer for d. Below we shall be able to make more 
meaningful estimates of when and where these are small, and hence assess the 
validity of the thermal wind approximation in (2.16). 

Assuming that R, and E, are negligibly small, we take a/a t  and az/az”2 of (2.16) and 
substitute the results into the buoyancy equation (2.7 c )  to find 

f cos a a8 f cos a a26 
-- = N2sina&+K-- 
sina at sina a i 2 ’  (2.19) 

Solving this for Zi and substituting into the $-momentum equation (2.7b) the result 
may be written as 

where s = pJ, 
(2.20) 

(2.21) 

a Burger number. Thus the along-slope momentum dynamics have been reduced to 
a simple diffusion equation, despite the presence of both rotation and stratification. 
We shall refer to  (2.20) as the ‘slow diffusion’ equation, since for (T > 1 it predicts 
that the boundary layer will diffuse inward more slowly than the usual non-rotating 
boundary layer. The cross-slope flow leads to Coriolis forces which oppose the 
diffusion of along-slope momentum into the fluid. This is the effect that slows the 
diffusion and, in the case of an Ekman layer, brings it to  a halt. Yet the growing 
buoyancy force does not allow a steady Ekman balance, and so the boundary layer 
continues to  thicken. 

The slow-diffusion equation (2.20) is, in the limit S < 1 (and S - O(l/cr)), identical 
to a result derived previously by Gill (1981) for the evolution of the density field 
during the spin-down of a frontal region in the ocean interior (see also Garrett 1982). 
I n  their context slow diffusion is seen as an enhanced lateral diffusion. 
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Using the slow-diffusion equation (2.20) we may also estimate the cross-slope 
transport. Taking the $-integral of the buoyancy equation ( 2 . 7 ~ )  and applying the 
insulating boundary condition (2.8 b )  we form 

where 

Jomd$g = MN2sina-d2cosa,  

M = JOm did ,  

(2.22) 

(2.23) 

the cross-slope transport. Substituting 4 for B as before from the approximate 
thermal wind equation (2.16) (with R, and E,  equal to zero) and rearranging we find 

(2.24) 

Hence, if the flow does attain a steady state, the cross-slope transport is given by 
Thorpe’s result (2.15). Assuming that the slow-diffusion equation (2.20) adequately 
describes the time rate of change of 4 over most of the boundary layer, we may use 
it to obtain a scale estimate of the integral term in (2.24). By time t ,  B will have 
changed by an amount comparable with - V (assuming v” = 0 is the proper bottom 
boundary condition for (2.20)) in a region of thickness D, estimated from (2.20) as 

Hence we may form the scale estimate 

Using this result the transport equation may be rewritten as 

where 

-=c M - +-, K;;,a 

WOI 
1 l /u+S 

= S l f c o s a ( m - ) .  

(2.25) 

(2.26) 

(2.27) 

(2.28) 

We shall call 7 the ‘shut-down time ’ because it gives the timescale over which the 
cross-slope transport relaxes to the steady limit of Thorpe’s solution, K cot a. C is an 
O( 1) constant to be determined empirically. We have normalized the equation by 

= I -tV8,l, the magnitude of the steady Ekman transport when N = 0, since 
this will be the scale of the transport before buoyancy becomes important. 

For u = co and S < 1 the shut-down time, 7, is equal to 70, the timescale we 
determined in (2.12) for the onset of buoyancy effects in the boundary layer. Thus, 
at least for this simple case, the shut-down time is the time it takes for cross-slope 
advection to significantly alter the force balance within the boundary layer. 

When u = 1 the shut-down time varies as a-4, indicating that care should be taken 
when applying the theory to regions of non-constant slope. In particular, the 
horizontal lengthscale of variation in 7 should be much greater than the boundary- 
layer thickness. 

The analysis above hinged upon having very small values of R, and E,, the scales 
of the inertial and viscous terms in the P-momentum equation (2.16). While the 
boundary layer is initially forming, the timescale for changes in Zi will be (fcos a)-1, 
and R, will be O ( l ) ,  so clearly our results do not apply for this early time. After this 
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time the transport equation (2.27) suggests that  the timescale for changes in 
Q will be r ,  the shut-down time. Thus we expect R, 4 1 if (i) t % (f ~ o s a ) - ~ ,  and (ii) 
7 % (fcosa)-l. We shall see in $3  that  violation of this constraint on r does not 
significantly alter our results. The viscous term E, will also initially be at least 0(1) 
for t < (fcosa)-', since the boundary layer is thinner than 6, before that time. If 
the boundary layer for Q later thickens at  the same rate as slow diffusion (2.20) 
predicts for 6 then E,  will be small when D,  9 6,. In general we expect that E ,  4 1 
if (i) t % (fcosa)-', and (ii) D ,  $ 6,. We explore the validity of these expectations 
numerically below. 

3. Numerical solutions 
The set of coupled equations (2.7) describing the boundary layer was solved 

numerically, using forward-differencing in time, and central-differencing in space. 
Each run was initialized with 4 and 6 set equal to the steady N = 0 Ekman-layer 
solution on a slope, and with B = 0. This was done to minimize inertial oscillations 
in the solutions, similar to the gradual 'switching on'  of the boundary condition as 
seen, for example, in Weatherly & Martin (1978). We are thus necessarily 
concentrating only on boundary-layer behaviour for t > (fcos a)-1. Runs started 
with undisturbed initial conditions, Q = 0, 6 = V ,  and B = 0, had the same general 
behaviour as the solutions shown below, but had larger inertial oscillations, making 
the results more difficult to  see. There were approximately six grid points within the 
initial boundary-layer thickness, 8, (typically 0.14 cm), and 2400 time steps per 
period of revolution. Integrations covered a depth of at least 708,, and the boundary 
layer never significantly interacted with the upper boundary. The numerical scheme 
was checked against known behaviour (e.g. final steady velocity profiles, and 
timescale for decay of transients) of the unstratified case. 

3.1. Numerical integrations with little or no diffusivity 

Our laboratory experiments were salt stratified, so density diffusion was essentially 
negligible over the timescales of interest. To compare with these experiments we first 
present results of numerical integrations for the case K = 0. Throughout all the 
numerical results, f= 1 s-l, N = 2 s-l, and v = 0.01 em2 s-l, values typical of the 
laboratory experiments. 

Figure 1 (a)  shows B- and $-profiles versus z  ̂ a t  three different dimensionless times 
for V = - 1 cm s-l (corresponding to up-slope boundary-layer transport). Note that 
the V = f 1 cm s-l solutions are symmetrical in their velocity fields. The dashed lines 
are solutions to  the slow diffusion equation (2.20) a t  the same times (also initialized 
with the steady N = 0 Ekman velocity profile, and with a no-slip lower boundary 
condition). The 8 boundary layer thickened almost exactly as predicted by the slow 
diffusion equation, especially for large t / 7 .  The up-slope flow decreased in magnitude 
over time, and extended over roughly the same thickness as the 6 boundary layer. I n  
this instance, lacking density diffusion, it was the cross-slope velocity Q that had to 
advect the density field to  bring 6 into thermal wind balance. The accuracy of the 
slow diffusion equation in predicting the 6-velocity is an indication that the thermal 
wind assumption was valid over almost the whole depth of the boundary layer, 
particularly for larger t / 7  (inspection of the individual terms in ( 2 . 7 ~ )  during the 
integration also showed this to  be true). 

As Q advects the stratification up- or down-slope, there is the clear possibility that 
the resulting density field may not be statically stable. Figure 1 (b)  shows the density 
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FIQURE 1. Numerical solutions of (2.7) versus z^, with a = lo", f =  1 s-', N = 2 s-l, and 
v = 0.01 om2 s-l. Along-slope (6) and cross-slope (4) velocity profiles are shown in (a) for K = 0 
and V = - 1 cm s-l, a t  three dimensionless times: t / 7  = 1, 5, and 20 (7 = 7.3 9). The &profiles are 
compared with solutions (dashed lines) of the slow-diffusion equation (2.20) for the same times 
(at t / 7  = 20 the profiles are nearly identical). The density perturbation, p+p', at t / T  = 20 is shown 
in (b) with all parameters as in (a) except that I.' = +_ 1 cm s-l. The effect of a small density 
diffusivity, K = om2 s-l, on the profiles in (b) is shown in (c). 
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FIQURE 2. Normalized cross-slope transport versus t / 7  from three numerical solutions to (2.7). All 
parameters were as in figure 1 (a) except the slope angly, which was varied aa shown. Also shown 
(+) is a fit to the data given by M/IM,I = 0.8072 ( t / 7 ) - r .  

perturbation, p+$,  at  t / r  = 20, for two different interior along-slope velocities, 
V = + 1 cm s-l (causes a down-slope transport), and V = - 1 cm s-l (causes an up- 
slope transport). Figure 1 (c) shows the density perturbation for the same situations 
as in (b)  except with g = loa, representative of the actual molecular diffusivity of 
salt. The up-slope favourable case (V = - 1 cm s-l) was statically unstable only in a 
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PKWRE 3. Numerical solutions of (2.7) versus 5,  with a = 15', f = 1 s-l, N = 2 s-', and v = K = 
0.01 cm2 s-'; all at t / T  = 20 (7 = 12.6 9). In (a) and ( b )  V = - 1 cm s-', whereas in (c) and (d )  
V = 1 cm s-'. The $-profiles are compared with solutions (dashed lines) of the slow diffusion 
equation (2.20). Also shown (dotted lines, marked GT and GT) are the G- and &profiles for Thorpe's 
steady solution (2.13) with the same parameters (except V) .  

region very close to the boundary, and most of this unstable region was removed by 
the small diffusivity. In  all of the laboratory experiments presented below this was 
the sense of the interior velocity field, hence we ignore static instability in our 
analysis of the experiments. By contrast, the down-slope case (V  = + 1 cm s-l) was 
marginally unstable over much of the boundary layer, and the diffusivity did little 
to change this situation. Thus we expect that for IJ 9 1 our theory may need to be 
modified for interior velocities of positive sign, to account for possible static 
instability. Indeed, some laboratory experiments (not presented here) involving 
down-slope flow did show signs of instability in the boundary layer. 

Figure 2 shows the normalized cross-slope transport M / w , I ,  versus non- 
dimensional time t / ~ ,  for runs with three different slope angles, a = 5O, loo, and 1 5 O ,  
with corresponding shut-down times 31.8, 7.3 and 2.8 s. For these runs K = 0 and 
V = - 1 cm s-'. All other parameters were as before. The three curves collapsed to one 



Buoyant inhibition of Ekman transport on a slope 643 

(except for the inertial oscillations), indicating that 7 was the correct parameter to 
non-dimensionalize the time. Also plotted (+ )  is a fit to the curves based on our 
transport prediction (2.27). The constant C we used was 0.8072, which came from 
fitting (2.27) to the numerical data at t /7  = 30. The fit looks good, even as early as 
t /7  = 2, indicating that, at least for K = 0, the transport resembles our prediction. 

When a = 15", 7 = 2.8 s, and so we would expect buoyancy effects to become 
important even before the Ekman layer is fully set up, possibly violating the scaling 
requirement 7 % (f cosa)-'. The only noticeable effect of this short 7 ,  however, was 
to excite somewhat larger inertial oscillations than in the cases with longer 7 .  

3.2. Numerical integrations with large diffusivity 
Subsequent numerical runs were carried out with K = v = 0.01 cm2 s-l (c = 1) to 
explore the effects of large density diffusion upon the boundary layer. Again, 
f = 1 s-l, and N = 2 s-l. For all runs the slope was 15". The only parameter that was 
varied was the sign of the initial interior velocity, V ,  being either plus or minus 
1 em s-l. 

Figure 3 (a ,  c )  shows 4- and $-velocity profiles versus 2 at t /7  = 20 (7 = 12.6 s) for 
(a )  V = - 1 em s-l, and (c) V = + 1 em s-'. Plotted as dashed lines are solutions to the 
slow diffusion equation a t  the same time. For comparison the Zi- and 6-velocities for 
Thorpe's steady solution with the same parameters (except V ,  which we are not free 
to specify) are plotted as dotted lines. In both cases the $-velocity profile had diffused 
away from the boundary approximately as much as the slow-diffusion solution 
predicted, but the magnitude of the $-velocity did not match the slow-diffusion 
solution, especially near the boundary. The 4-velocity had become positive in both 
cases by this time, and was concentrated near the boundary in a Thorpe-like profile. 
In these cases the assumption of thermal wind balance in 8 was probably flawed close 
to the boundary, owing to the density boundary condition. Specifically, the Ekman 
number, Es,  had probably become large there owing to the thinness of D,. 

The stratification parameter, p+p',  is shown a t  the same time, for these two cases 
in figure 3(b, d ) .  In both cases the stratification remained statically stable because 
of smoothing by the density diffusion. The perturbation to the mean stratification 
diffused upwards approximately as far as the &velocity profiles. In contrast to the 
K = 0 cases, here diffusion was the primary means of altering the density, except near 
the boundary where Zi remained large. 

Figure 4 ( a )  shows two families of $-velocity profiles (with parameters as in figure 
3) over a long period of time. The profiles suggest strongly that the time-dependent 
solution is moving toward Thorpe's steady solution. The $-velocity may achieve this 
goal fairly easily since it is concentrated near the boundary, but the $-velocity must 
change everywhere to attain the steady solution. This then appears to be the role of 
slow diffusion : the gradual transformation of the interior along-slope flow to that of 
Thorpe's steady solution, V,. I n  addition, the numerical solutions imply that V ,  is 
eventually the correct bottom boundary condition for the slow-diffusion equation, 
not 8 = 0 as we used. When K = 0, V, is also zero, which explains why the slow- 
diffusion solution was so accurate in that case (figure 1 ) .  

The normalized cross-slope transport for the two runs of figure 3 is plotted versus 
t /7  in figure 4(b). Also plotted (+ )  are fits to the runs. The fits are from 

which was derived in exactly the same manner as (2.27), but using the idea, 
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FIGURE 4. (a )  Numerical solutions for B at different times (times shown are non-dimensionalized by 
T ) ,  with parameters as in figure 3. Thorpe's steady solution for 6 is also shown (dashed line). Profiles 
to the left of the dashed line had V = - 1  cm s-l, and those t o  the right had V =  1 ems-'. 
Normalized cross-slope transport versus t / T  is plotted in ( b )  for two numerical solutions to 
(2.7). All parameters were as in figure 3. Also shown ( + )  are fits to the data based on (3.1). The 
limiting value of the (normalized) transport, Kcota/w,I, is also shown (dashed line). 

suggested by the numerical solutions, that V,  is eventually the proper bottom 
boundary condition for the slow diffusion equation. Hence instead of scaling a6/at as 
- V / t ,  we used a6/at - - (V-  V , ) / t .  This should somewhat overestimate the 
magnitude of %/at ,  since the assumed bottom boundary condition was actually only 
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gradually achieved, and this was the sense of the error in the plotted fits. Note that 
the analysis in $2 is unable to determine the rate at which this new bottom boundary 
condition is established. The fits used the same empirical constant, C = 0.8072, as 
was determined from the K = 0 case, and are still fairly good, especially a t  larger t / r .  

The theoretical ideas of $2 and the above numerical simulations support the 
conclusions that : (i) the v” boundary layer diffuses into the interior at a rate predicted 
by the slow-diffusion equation, eventually bringing v” in the interior to  V,, and (ii) the 
cross-slope transport changes from M,, to K cot a over time as ( t / ~ ) - i .  

4. Experimental set-up 
Laboratory experiments were carried out on a rotating table at the CSIRO Marine 

Laboratories in Tasmania, Australia. Rotation speed was controlled to within 
+0.001 rad s-l. The main tank (figure 5 )  used in these experiments was a Plexiglas 
section of a sphere. It varied from axial symmetry by no more than f0.25 cm. This 
tank will be referred to as ‘the bowl’. For comparison we also did experiments in 
a right-circular cylindrical tank, 45.5 cm in radius and filled to the same depth as 
the bowl. 

The tank was stratified with salt, hence density diffusion was almost non-existent 
over the course of an experiment. Typically the tank was stratified in five layers of 
increasingly salty water, from 0 to 140 parts per thousand, giving a nominal 10% 
density difference from top to bottom. The kinematic viscosity also varied by about 
10% owing to the salinity, and account was taken of this variation in the analysis, 
$6. The layers were allowed to  diffuse to a smooth profile overnight. Density was 
measured with a profiler that recorded conductivity, temperature and depth. The 
profiler had a spatial resolution of about 0.2 cm vertically. Typical profiles of density, 
p,  and buoyancy frequency, N ,  are shown in figure 6. N goes to zero near the top and 
bottom owing to  density diffusion. The profile shown is from the centre of the bowl. 
Profiles of N taken away from the centre do not go to zero near the lower floor except 
in a very small diffusive boundary layer. Previous experimenters have gone to great 
lengths (see for example Buzyna & Veronis 1971) to achieve a constant N-profile so 
that they could compare their experimental results with theory. For our experiments 
we shall make local comparisons of the flow with the theory developed in $2, so a 
local knowledge of N and a is sufficient. The centre of the bowl almost unavoidably 
had a small pool of low-Nwater a t  the bottom, and the dynamics there were generally 
very different from those at greater radius where Nand 01 conspired rapidly to  make 
buoyancy important in the boundary layer. Our comparisons are based on the 
assumption that the two regions did not interact significantly. This will be discussed 
further in $6. 

For a typical experiment the fluid was stratified and allowed to  spin-up overnight, 
with a lid on top to avoid air stress a t  the surface. The lid was 3 cm above the surface 
of the water. At t = 0 the rotation rate of the container was increased by an amount 
AQ (approximately lo%), over about 5s. Initially the fluid was in solid-body 
rotation relative to the container, which was the new frame of reference, at an 
angular velocity -AQ (for a spin-up). The Rossby number, e ,  of the flow is given by 
6 = AQ/Q. For small e forcing along the boundary at lengthscale L will penetrate a 
depth H ,  into the fluid, where H, = fL/N. For our experiments f/N was around 1/3 
in the body of the fluid, whereas the aspect ratio, depthlradius, of our containers was 
around 114. So we expected that the effects of boundary forcing would extend to the 
surface of the fluid, although showing some noticeable attentuation by then. 



646 P. MacCready and P. B. Rhines 

Radius (cm) 

0 10 20 30 40 
I 
1 

I 

I 
I 

(Max. depth = 12 cm) 

///////// 

FIGURE 5. (a) Cross-section of the 'bowl' used in the laboratory experiments, and ( b )  a 
definition sketch of the slope coordinate frame. 
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FIGURE 6. Measured profiles of (a) density and ( b )  buoyancy frequency versus depth, at the 
centre of the bowl, for a typical laboratory experiment. 
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Various flow visualization techniques, described in $5 ,  allowed us to track the fluid 
as it eventually spun-up to the new rotation rate of the container. Density profiles 
were taken before and after experiments, and in general were nearly indis- 
tinguishable. 

Although we present the laboratory experiments as support for the theoretical 
ideas of $2, in fact the laboratory work was done first, and served as a guide for the 
theory, which was developed later. 

5. Experimental results 
We used three types of flow visualization to explore spin-up in the stratified bowl 

and cylinder : (i) placing dye in the boundary layer to show the direction of stress at  
the wall, (ii) following beads floating on an isopycnal to determine zonal velocities 
(zonal is defined as along a circumference), and (iii) placing dye in the body of the 
fluid to show the shear history of the flow. 

5.1. Boundary-layer visualization 
To visualize flow in the boundary layer, just before a spin-up experiment a number 
of potassium permanganate crystals were dropped onto the bottom of the tank, 
along a radius. These exude a thick purple dye showing the direction of flow just 
above the bottom, and hence the direction of stress at  the boundary. Figure 7 (a ,  b )  
shows these dye streaks during an experiment in the cylinder, and figure 7 (c, d )  
shows dye streaks for a similar experiment in the bowl. Both containers had similar 
stratifications. 

Flow in the boundary layer of the cylinder remained very much like an Ekman 
layer, moving out and downstream at 45" to the local radius. This behaviour 
continued even as the interior flow was decreased by the fast spin-up. The bowl 
exhibited very different behaviour. Flow in the outer half of the tank, where a is 
greater and the shut-down time was very short, soon became mostly zonal, 
suggesting that the Ekman boundary layer was shut-down by the buoyancy forces 
on the sloping bowl wall. For this experiment T was less than 5 s everywhere outside 
of r = 15 cm. 

5.2. Flow velocity measurements 
In order to measure zonal velocity we made long-exposure photos of particles 
('beads') moving along density surfaces, similar to the technique used by Holton 
(1965). The beads were made of candle-wax and crayon, which could be combined in 
any ratio to conform even to the rather high densities near the bottom of our 
stratifications. A heated mixture of the two was sucked into a large syringe and then 
dotted out onto a flat surface to solidify in drops about 2mm in diameter. The 
advantage of these beads is that they may be used for larger velocities than the 
thymol-blue technique (Buzyna & Veronis 1971). Also they give information on an 
entire density surface, instead of at just one point as in laser-Doppler velocimetry. 
The disadvantages are that it is difficult to make beads of perfectly consistent 
density, and the data reduction is somewhat time consuming. In a given experiment 
we had up to 60 beads floating along one density surface, with a vertical scatter in 
their positions of up to k0.5 cm. This led to some scatter in the velocity profiles in 
regions of strong vertical shear, and was the largest source of error in the data. 
Degassed water was used to avoid bubble formation on the bead surfaces. 

With a group of light-coloured beads floating along an isopycnal, the room was 
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(4 (4 
FIQURE 7. Photos of potassium permanganate in the boundary layer of two stratified spin-up 
experiments. The upper photos are looking down on the cylinder at  (a) t = 10 s ,  and ( b )  t = 40 s. 
The lower photos show the bowl at  (c) t = 10 s, and (d )  t = 40 s .  Crosses mark the centres, and the 
arrows point at r = 25 cm along the radius where the dye crystals lay. Both experiments were spun- 
up 15% fromf = 1 s-l. Radially outward flow persisted in the cylinder, yet i t  quickly disappeared 
in the bowl, especially a t  larger radius. Note the shape of the surface velocity profiles, indicated by 
the line of dye from very small crystals which dissolved immediately as they entered the water. 
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FIGURE 8. Normalized angular velocity versus radius, r ,  for a stratified spin-up experiment in the 
cylinder at a depth of 7 cm from the top (total depth was 11.6 cm), at eight different times (in 
seconds), as listed. The container was spun-up 15 Yn fromf = 1 .1  s-l. The solid lines are hand-drawn 
fits to the data. The fluid rapidly spun-up in the central region, which could be reached by the 
meridional circulation initially emanating from the outer corner. 

darkened and a spin-up experiment initiated. The beads were lit by a strobe light, 
and were photographed from above in the rotating frame of reference. Each exposure 
spanned 10-20 flashes of the strobe, hence each bead would appear in a photo as a 
series of dots along an arc about the centre of the tank. Each photo gives a profile 
of angular velocity as a function of radius, at  a given depth and time (the time was 
approximated as being midway through a photograph). 

Figure 8 shows the time-history of the angular velocity, o, for a 15% spin-up 
experiment in the stratified cylinder. The t = 0 line was drawn using the known AD 
of the experiment. Within three minutes most of the fluid had been spun-up to about 
55 % of the new rotation rate. This was the signature of ‘fast ’ spin-up in the cylinder, 
caused by vortex stretching driven by Ekman transport in the bottom boundary 
layer. Only over much longer times did the viscous boundary layer from the side and 
bottom walls begin to complete the spin-up to the new rotation rate. This region of 
‘fast ’ spin-up is qualitatively in agreement with previous theoretical and 
experimental work such as Walin (1969), and Buzyna & Veronis (1971). Notice the 
jet-like region near the outer boundary, which occurs in a region ‘missed’ by the 
meridional circulation. 

Although there is some vertical displacement of density surfaces during ‘fast ’ spin- 
up owing to vortex stretching, the density surfaces slump back almost to their initial 
positions over the longer viscous timescale. There is a tiny shift in isopycnals in the 
long term to fit the geopotential paraboloid of the new rotation rate, but this requires 
no vortex stretching. Ultimately, fluid particles in the interior achieve the new 
rotation rate because their potential vorticity has been altered by viscous stress. 

Figure 9 shows a similar angular velocity history for a spin-up at  two levels in the 
stratified bowl, starting from f = 0.66 s-l. In this experiment there was little, if any, 
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FIGURE 9. Normalized angular velocity versus radius for two, essentially identical, stratified spin- 
up experiments in the bowl at depths of (a) 3.4 cm from the top, and ( b )  7.45 cm from the top (total 
depth at  the centre was 11.7 cm), at eight different times (in seconds), as listed. The container was 
spun-up 10% from f = 0.66 s-’. The edge of the tank at the given depth is marked with cross- 
hatching. The fluid adjusted slowly t o  the new rotation rate, and did so mainly by diffusion inward 
from the bottom. The early profiles in ( a )  indicate that a slight zonal circulation was present a t  the 
start of the experiment. 
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evidence of a ‘fast’ spin-up such as in the stratified cylinder. Presumably much of the 
Ekman layer had been shut-down by buoyancy forces, so the meridional circulation 
which causes ‘fast ’ spin-up never developed. 

Figure 10 is for a case similar to figure 9, except that  f = 1.5 s-’. In this experiment 
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FIGURE 10. Same as figure 9 except the bowl was spun-up from f =  1.5 s-l. There was clear 
evidence of some 'fast' spin-up in the acceleration of the inner region over the first minute. As in 
the cylinder, a zonal differential jet occurred in the corner where the meridional circulation had not 
reached. 

there was some evidence of 'fast' spin-up. Recall that the shut-down time (2.28) 
increases with increasing f. In this case it appeared that the Ekman layer was 
operative long enough to affect the inner 15 ern of the flow, over the first minute. This 
issue will be taken up  more quantitatively in $6. 
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FIGURE 11. Onion-slice flow visualization in the stratified cylinder or bowl. Just before a spin-up 
experiment a sheet of dye (a )  was injected into the fluid from top to bottom along a radius. As the 
spin-up started, ( b ) ,  the dye sheet was stretched around the tank. As the spin-up proceeded, (c), the 
dye sheet was wrapped up into a spiral. A slice (d )  through the dye sheet revealed lines of constant 
angular displacement. Fluid particles on adjacent dye lines in the slice had gone around the tank 
a complete revolution relative to each other. 

5.3. Onion-slice $ow visualization 
One final method was used to  see the ‘shear history’ of an experiment. A vertical 
plane of fluorescein dye was introduced with a ‘rake’ of injection tubes. Following 
figure 11,  one can see how this dye plane is deformed by the sheared zonal velocity 
field. Slicing through this structure we find the dye lying along lines of constant 
angular displacement, with fluid particles on adjacent lines having travelled around 
the tank one revolution relative to each other. The slice was made by shining a sheet 
of light vertically down through the tank, so the dye lines appeared white on a dark 
background. We call this flow visualization technique an ‘ onion-slice ’ because of its 
appearance, especially in the stratified bowl. In  a photo of an onion-slice experiment, 
regions where there has been a radial or vertical gradient of the zonal velocity show 
up with dye lines normal to  that gradient. The more shear there has been, the more 
closely spaced these lines are. 

Figure 12 shows onion-slice photos from a spin-up experiment in the stratified 



FIGURE 12. Onion-slice photos of a stratified spin-up experiment in the cylinder a t  four times, as 
listed. The container was spun-up 15 % from f = 1 s-l, and had a stratification similar to that 
shown in figure 6. The horizontal dye sheets bulged upward in the centre owing to  the broadly 
distributed vertical shear of the zonal flow during ‘fast’ spin-up, while the sidewall boundary layer 
formed vertical sheets. 
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FIGURE 13. Same as figure 12, except in the bowl. Note that in (a )  there was only one actual dye 
line, which lay close to the edge of' bowl ; the fainter lines were reflections. The adjusting flow was 
dominated by diffusive penetration normal to the boundary. 
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FIGURE 14. Colour photos of a stratified spin-up experiment in a hemispherical container, showing the 
complete fluorescein signal, (a) early in the experiment, and (b) at a later time. In general, the dye injected 
was initially rather messy, but the shear in the zonal velocity field sharpened the gradients of the dye, leading 
eventually to well-defined lines in the light sheet. 

MACCREADY & RHINES (kcing p.  655) 
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cylinder, and figure 13 shows photos from an experiment in the stratified bowl, 
graphically demonstrating the different nature of the flow in the two containers. In  
the first two photos of the cylinder (figure 12a, b )  the widely spaced dye lines nearly 
filled the body of the fluid, expressing the penetration of the ‘fast’ spin-up 
throughout most of the tank. Later (figure 12d) the shear had continued fairly evenly 
through the depth of the fluid. The dye surfaces bowed upwards from the bottom 
centre where ‘fast’ spin-up was most intense, while a zonal differential jet near the 
outer wall represented fluid that was only slowly spun-up. The diffusive inward 
penetration near the outer wall was reflected in the vertical strike of the dye lines 
there. Fluid which had been transported radially outward in the bottom Ekman 
layer could be seen as a wedge in the corner of the cylinder. This wedge was the finite- 
Rossby-number expression of the circumferential forcing of the interior by the 
boundary layer flow. 

Experiments in the bowl, figure 13 and figure 14 (plate l),  showed remarkably 
smooth quasi-diffusion of momentum inward from the sloping bottom. Early in an 
experiment, figure 13 ( a ) ,  just a single dye sheet was visible near the boundary. The 
inner core of fluid had made about one revolution relative to the boundary. At this 
rotation rate (f = 1 s-l), intermediate between the two cases shown in figures 9 and 
10, there was little sign of significant ‘fast’ classical spin-up, which would cause an 
upward bowing of the deeper dye sheets. Regions free of dye lines represent 
unsheared fluid, rotating at nearly their original angular velocity. I n  this core there 
was a slight ‘fast ’ spin-up even in the cases with rapidly shut-down boundary layers 
(e.g. the inner core of figure 9 ( b )  experiences weak spin-up without waiting for 
diffusion from the boundary). 

Looking at spin-up in a variety of containers we found a consistent tendency for 
the dye sheets to mimic the shape of the lower boundary. Figure 12 represents 
perhaps the most extreme violation of this result, in the case of an extensive 
horizontal bottom above which the Ekman layer can continue to flow. 

6. Comparison of theory with laboratory experiments 
The theoretical ideas of shut-down and slow diffusion developed in $2  may be 

useful in understanding the experimental results if we assume that the experimental 
boundary layer developed in accordance with its local flow parameters. This 
approximation is commonly made for geophysical boundary layers when the scale of 
variation of the relevant parameters, such as N and V ,  is much greater than the 
boundary-layer thickness. Since N and V typically vary in our experiments only over 
the depth and radius of the bowl, we expect our local theory to be valid until the 
boundary layer has ‘slow diffused’ a good portion of the depth into the fluid. If 
significant fast spin-up has occurred then we would have to take account of the 
space-time structure of V in applying the theory. 

Figure 15 shows thc shut-down time 7 versus radius, for the two bowl experiments. 
In  the small-f experiment there was almost no sign of fast spin-up, particularly for 
the shallow beads. The brevity of the shut-down time implied that there would be 
essentially no radial boundary-layer transport, and hence no fast spin-up outside 
r = 10 cm. Fast spin-up inside that radius would penetrate less than one-third of the 
full depth a t  the centre, barely affecting the deeper beads. Thus the small-f swirl 
velocity data appear consistent with the interpretation that the boundary-layer 
transport was strongly limited by the shut-down mechanism. 

In  the large$ experiment there was evidence of some ‘fast ’ spin-up, although not 
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FIQIJRE 15. Shut-down time a t  the lower boundary versus radius for two bowl spin-up experiments: 
(i) refers t o  the experiment whose velocity da ta  are shown in figure 9 (small-f), and (ii) refers t o  the 
experiment whose velocity data  are shown in figure 10 (large-f). There are two profiles for each 
experiment since an experiment had to  be performed twice in order to  measure velocity at the two 
different depths. 

nearly as much as in the cylinder, nor for as long. In  the cylinder ‘fast’ spin-up 
occurred for about 3 min, whereas in the bowl with large-f it only lasted about 1 min. 
The shut-down time implied little transport outside of r = 15 cm. Owing to the 
increased rotation rate, the e-folding height of the region of fast spin-up would 
extend through about tJwo-thirds of the depth of the fluid, affecting both deep and 
shallow beads. The large-f data are thus also qualitatively consistent with the shut- 
down hypothesis. 

Assuming that the small-j experiment was, over most of its radius, unaffected by 
‘fast’ spin-up, we may compare the angular vclocity with that predicted by the slow- 
diffusion equation. Figure 16 shows angular velocity versus time a t  four locations in 
the small-f experiment. Also shown are predicted slow-diffusion solutions based on 
the value of vS/( 1 +S) at the boundary nearest to the position in question. The three 
comparisons at  larger radius are fairly close, indicating that slow diffusion was 
probably a good description of the situation. An alternative hypothesis is that the 
time rate-of-change of the zonal velocity was due to  meridional circulation driven by 
whatever boundary-laycr transport was present, and not slow diffusion. Without 
knowing the actual boundary-layer transport it is difficult to prove or disprove this 
idea, and we may say only that the data are consistent with slow diffusion. The 
innermost comparison (figure 16 d )  diverged strongly from the slow-diffusion 
prediction. This was probably due to the effects of ‘fast’ spin-up near the centre. 
Similar data for the large-f experiment (not shown here) also diverged strongly from 
the slow-diffusion prediction, again presumably due to  the effects of ‘fast ’ spin-up. 
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FIQURE 16. Normalized angular velocity versus time, at four different locations during the small- 
f (refer to figure 9) stratified spin-up experiment in the bowl, compared with velocities predicted 
by local solutions to the slow diffusion equation (2.20). The four locations are shown schematically 
at the bottom. 

7. Conclusion 
Our analysis of the boundary layer for rotating, stratified flow along a slope led to 

a circulation markedly different from that of an Ekman layer. It was neither steady, 
nor was it simply related to the interior velocity. Instead, the velocity profiles, and 
the cross-slope transport, were in general highly time-dependent . Buoyancy forces 
due to advection and diffusion of the stratification modified the force balance, 
tending to resist up- or down-slope velocities. 

Very soon after its initiation the flow began to resemble an Ekman layer, but a t  
large t /7  the flow looked like the steady solution (2.13) of Thorpe (1987), which allows 
only one interior along-slope velocity, and only one cross-slope transport. These 
properties make Thorpe’s solution difficult to apply to geophysical situations. 
Thorpe (1987) and Garrett (1990) addressed this difficulty by modifying the steady 
theory to include depth-varying profiles of viscosity and diffusivity, which could be 
interpreted as saying that a given internal geostrophic flow exerts control over the 
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magnitude of turbulent diffusion near the boundary. We have taken a different 
approach, trying to make the boundary-layer representation more realistic by 
allowing time dependence. In doing so we found that there was a whole continuum 
of solutions between those of Ekman and Thorpe. 

The ‘slow diffusion’ equation (2.20) predicted that the boundary condition on the 
along-slope velocity would diEuse into the interior, and the numerical simulations of 
$3  implied that the eventual boundary condition for this equation was the interior 
velocity of Thorpe’s solution (which vanishes as K + 0). What is of interest about slow 
diffusion is that it actually penetrates the interior much like a non-rotating viscous 
boundary layer, in contrast to  both Ekman and Thorpe’s solutions which remain 
confined close to  the boundary. 

In  $2 we also predicted the temporal evolution of the cross-slope transport. With 
the aid of numerical solutions to  determine an unknown constant, we found that the 
transport changed smoothly from the initial Ekman-layer value to  the final value of 
Thorpe’s solution over a timescale 7 (2.28), the ‘shut-down time’. 

The shut-down time gives a sensible way to  evaluate what sort of boundary-layer 
theory we should be using for a given situation. If the flow is varying much more 
rapidly than the shut-down time, say owing to the effects of ‘fast’ spin-up, then 
standard Ekman theory is a good approximation. If we are only interested in the flow 
long after the shut-down time, and only over a region where slow diffusion will have 
accomplished its work without being countermanded by other circulations or 
buoyancy sources, then Thorpe’s steady solution is appropriate. Yet anywhere 
between these two limits we must necessarily be aware of the unsteady nature of the 
boundary layer. 

The stratified spin-up experiments in a bowl with a sloping bottom boundary 
described in $4 and 5 occupy a regime where slow diffusion and the shut-down time 
were very important. Over much of the bowl with small-f the shut-down time was so 
short that almost no up-slope transport was allowed, and hence almost no ‘fast ’ spin- 
up occurred. In  these cases the main decrease in zonal velocity was apparently due 
to slow diffusion. I n  the bowl spin-up experiments the large-scale dynamics were 
completely altered by the buoyancy modification of the boundary layer. Although 
the bowl was everywhere shallower than a cylinder wherein comparison experiments 
were done, the fluid in the bowl spun-up much more slowly than that in the cylinder. 
Thus, by varying the geometry of the experiment we ended up with a boundary that 
effectively had significantly lower drag than that of the cylinder. 

If the interior circulation is naturally oscillatory (as, for example, with a Rossby 
wave), these boundary-layer dynamics imply a frequency-dependent ‘ bottom 
friction’ which is strong only at high frequencies, where the flow changes direction 
before shut-down can occur. 

We may make a simple estimate of the along-slope stress that the boundary exerts 
upon the fluid using the equations developed in $2. Taking i-integrals of the rotated 
equations of motion (2.7) with boundary conditions (2.8) and solving for the 
boundary stress in terms of the integrated cross-slope transport M (again with 
vanishingly small 11, and E,)  we find 

a t  i = o ,  

or 
a6 

- v p o ~ ~ M p 0 f c o s a  at 2 = 0  for S < l .  (7.2) 
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FIGURE 17. Along-slope stress at ẑ  = 0 from a numerical solution to (2.7) with all parameters as in 
figure 3(a ) .  The actual stress, -vp,(aV^/ai), is shown by curve ( i ) ,  while curve (ii) shows the stress 
estimated from the right-hand side of (7.1), and curve (iii) shows the stress estimated from the 
right-hand side of (7.2). 

The last expression (7.2) is exact fop both the Ekman layer and Thorpe’s solution, 
simply expressing that the boundary stress is balanced by the Coriolis force on the 
cross-slope transport. For the time-dependent boundary layer the boundary stress is 
balanced both by the Coriolis force and the acceleration of the along-slope flow. 
Equation (7.2) tells us that, for S small (which we expect for small slopes), the 
acceleration term is negligible and the stress is tied to the transport, exactly as in the 
steady theories. One may question the validity of (7.2) on the grounds that it is an 
estimate of stress in a region where E, is likely to be large, violating our assumptions. 
Yet since we are using f-integrals of the equations it turns out that the scale estimate 
of the f-integrated viscous term in (2.7a),  divided by the &integrated Coriolis term, 
is ( U/V) (E~) (&JDo) .  While the first two parts of this scale estimate may be O( 1) when 
r = 1, the third term becomes small as the along-slope boundary layer ‘slow-diffuses ’ 
into the interior. Figure 17 shows the along-slope stress at  2 = 0 versus t /r  for a 
numerical run with cr = 1 and S = 0.29 (all parameters as in figure 3a). We also plot 
the right-hand sides of (7.1) and (7.2). The figure demonstrates that, even in a case 
with strong density diffusion and S not far from 1, the boundary stress is 
approximately equal to the Coriolis force on the cross-slope transport. This balance 
is ironic when we consider that the slow-diffusion equation implies that boundary 
stress balances along-slope acceleration when cr = 1. But from the numerical 
simdlations ($3) we know that the slow-diffusion equation gives a poor representation 
of bdndary stress when cr = 1. As u+co the slow-diffusion solution was nearly 
peddcf at the boundary and indeed, in this case its &integral is exactly equal to (7.1). 
For th6 stratified spin-up experiments (7.1) shows that the torque exerted by the 
bowl up’bn the fluid dropped off rapidly as the up-slope transport was shut-down by 
buoyancy forces. 

The boundaiy-layer theory developed in $ 2  is only applicable if the assumptions 
that went intd its development are reasonably satisfied. We assumed constant 
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viscosity, diffusivity, and stratification, we ignored variations along or across the 
slope, and we ignored the overturning of statically unstable stratifications. To make 
the theory more geophysically relevant the most important direction to pursue 
would be the inclusion of variable viscosity and diffusivity, as Thorpe (1987) and 
Garrett (1990) have done for the steady theory. We hope to  pursue this avenue in 
future work. 

I n  the atmosphere, the low thermal mass of air, combined with radiative means of 
changing temperature, make a conducting boundary condition on the density 
realistic. This boundary condition allows relatively simple Ekman-like boundary- 
layer solutions (Holton 1967 and Hsueh 1969). In  contrast, the ocean floor is best 
modelled as an insulating boundary, except in the few areas of geothermal heating. 
Hence it is in the ocean that we expect our theory could be used. There are practical 
difficulties, though, with applying any theory of the oceanic bottom boundary layer. 
Data are very scarce, and determining turbulent coefficients of viscosity and 
diffusivity is inexact. It is generally accepted that in a turbulent mixed layer near the 
boundary the Prandtl number may be close to one. Yet stratified turbulence may 
easily send its energy into internal wave motion, which can transport momentum far 
from the boundary, leading to either a very high Prandtl number or the abandonment 
of Fickian diffusion entirely. 

As a lowest-level approximation, let us assume that the ocean has a constant 
vertical eddy diffusivity, K,  given by Munk’s (1966) canonical value of 1 om2 s-l. 
Thorpe’s steady transport, Kcota ,  is then simply a function of the bottom slope. 
Note that the transport becomes infinite as the slope goes to zero, and so is certainly 
unphysical over flat areas (the interior along-slope velocity also goes to infinity in 
this case). Consider two regions in the ocean: a continental slope with relatively 
strong stratification, and an abyssal region with less slope and a small stratification. 
Over the sloping region, with t a n a  = lop2 and N = 3.5 x lop3 s-l, Thorpe’s transport 
becomes very small, having up-slope velocities of only 0.1 cm s-l if distributed over 
a 10m thickness. The shut-down time indicates that the transport begins to 
approach this small value in about a week. Over an abyssal plane, with tan a = lop3 
and N = s-l, Thorpe’s transport is large enough to  be important, 1 cm s-l if 
distributed over a 10 m thickness. Yet this value is only achieved over the shut-down 
time, which is 3 x lo4 years. These are only rough estimates, which do not account 
for variable viscosity and diffusivity. They do indicate, however, that  shut-down 
may be very important on continental slopes, while standard Ekman theory is useful 
over an abyssal plane. A yardstick to judge the possible importance of shut-down is 
that the e-folding timescale of ocean currents due to ‘fast ’ spin-up is typically taken 
as one year in numerical models. Any shut-down time shorter than this is likely to 
influence the evolution of flow along the ocean’s bottom boundary. 

In  general, the shut-down time and its supporting theory presented in $2 should 
help in determining when and how buoyancy becomes important to  the boundary- 
layer force balance in a given situation. 
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REVIEWS 

Chaotic Dynamics: an Introduction. By G. L. BAKER and J. P. GOLLUB. Cambridge 

This excellent book develops the foundations of chaotic dynamics from the viewpoint 
of a physicist a t  a level that is accessible to the undergraduate student. It is 
comparable in intellectual demand with F. C. Moon’s Chaotic Vibrations (Wiley, 
1987) but requires much less background than that graduate-level text. The authors 
manage to cover almost all of the basic concepts and tools of chaotic dynamics- 
logistic maps, phase spaces and trajectories therein, YoincarQ sections, time series 
and power spectra, basins of attraction, bifurcations (rather lightly), period-doubling 
cascades, fractal dimensions, and Lyapunov exponents - by focusing on the 
periodically excited, damped pendulum as a canonical example. They do include, in 
their final chapter, applications to fluid dynamics, chemical reactions, lasers, 
quantum mechanics, and statistical mechanics, but these require more antecedent 
knowledge than the preceding chapters and presumably would require selection and 
expansion by the lecturer. They also include exercises for the student, an appendix 
on Runge-Kutta numerical integration of differential equations, and program 
listings (in True Basic language) for the exercises. The illustrations are frequent, 
simple and clear. A diskette for IBM-PC-compatible computers (a Macintosh version 
may now be available) with programs that can duplicate or vary the simulations 
discussed in the text is available from the authors for $12. 

Baker & Gollub have, I believe, succeeded admirably in achieving their declared 
goal of making this important and fascinating subject accessible to undergraduates, 
and I have but minor complaints to  offer. They allege that the only prerequisites for 
their text are linear differential equations, introductory physics (basic mechanics), 
and PC-level computing, but it appears to me that either the student requires some 
prior knowledge of phase- plane analysis and elementary bifurcation theory or the 
material in chapter two requires amplification and supplementation by the lecturer. 
The resonance curve (response versus drive) of the periodically driven pendulum, 
which I have usually found to be the most revealing of all plane portraits, is neither 
mentioned nor displayed. And, although it is difficult to overestimate the 
contributions of Poincard to  this subject, I believe that the authors’ attributions (or 
absence thereof) may have succeeded in doing just that. 

That Chaotic Dynamics is aimed primarily at undergraduates should not preclude 
its use at more advanced levels. The teacher of a graduate fluid-mechanics course 
who finds Guckenheimer & Holmes (Nonlinear Oscillations, Dynamical Systems, and 
Bifurcations of Vector Fields, Springer, 1983) too intimidating or Moon (1.c.a.) too 
wide-ranging might well look to Baker & Gollub for the fundamentals of chaotic 
dynamics and proceed from there to discuss its implications for such problems as 
turbulence. Or, perhaps with even greater profit, the fluid-mechanics specialist might 
consider the challenges and rewards of offering an undergraduate course on one of the 
most exciting developments in classical physics in this century. 

JOHN MILES 

University Press, 1990. 182 pp. 225 (hardback) or 29.95 (paperback). 
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Theories of Fluid Flows Through Natural Rocks. By G. I. BARENBLATT, V. M. ENTOV 

This is an expanded and fully revised edition of the original Russian edition. 
Although the purist might wish to see a few grammatical and stylistic faults 
corrected, no reader will have any difficulty whatever in reading this text, and the 
authors are to be congratulated on mastering what to them is a foreign language. 

Its contents are built around work done over a period of 30 years by the three 
authors and largely reported in the Soviet literature. In many cases they anticipated 
similar work done much later in the ‘West’, and in some their work is essentially 
unknown to the world at  large. For this reason alone, it is extremely valuable to have 
it collected together in one volume. Most of the work refers to applications in the oil 
and gas production industry, though for good historical reasons some problems of 
groundwater flow are introduced (there is an exact parallel between certain gently 
sloping unconfined water flows and confined compressible gas flows). 

The text stands well on its own and should be read and studied as a whole and not 
in parts. The further I got into the book, the better I appreciated it. It is not a 
compendium of isolated results obtained using different approaches, approximations 
and notations (as is sometimes the case with prolific authors), but a beautifully 
crafted and balanced work setting out in a rational, consistent and scholarly way 
both the continuum-mechanical models that have provided a successful description 
of testing and production flows in the oilfield, and a fairly complete set of basic 
analytic solutions to the main important initial and boundary-value problems that 
result from these models. 

Those familiar with Barenblatt’s other texts will expect to see powerful use made 
of dimensionless, asymptotic and self-similar techniques : they will not be 
disappointed. To an older generation such methods provide unique insight into the 
mechanics of the real processes involved, early recourse to computed solutions being 
no substitute for dimensional analysis, for perturbation and matching methods in 
deriving general results that can be used in analysing field problems. The level of 
detailed mathematics included is perfectly judged to make the book both readable 
and convincing. Those intending to carry out detailed investigations are given an 
excellent start, and younger workers may learn some new techniques. 

There are six chapters, covering basic physical concepts, classical linear models of 
homogeneous fluid flow, classical nonlinear models of homogeneous fluid flow, non- 
classical flows (fractured porous or layered reservoirs, non-Newtonian homogeneous 
fluids, elasto-plastic porous media), two-phase flows and finally physico-chemical 
flows (those involved in enhanced oil recovery. involving heat or mass diffusion, and 
where relevant chemical reaction). Reservoir engineers will notice few if any 
important omissions, and should benefit not only from the references given to 
Russian papers but also from the informed selection made from the wider literature. 
They and chemical engineers will welcome the firm grasp displayed of practical 
aspects of the processes involved. Some will meet hodograph methods for the first 
time ; others will be intrigued by the use of a Bingham model for certain crudes ; most 
will enjoy the crisp treatment of fingering instabilities, flow in inhomogeneous media, 
end effects and lag effects in reaching capillary equilibrium. 

J. R. A. PEARSON 

and V. M. RYZHIK. Kluwer Academic Publishers, 1990. 395 pp. $95 or $147. 
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